A new type of iodide selective electrode prepared by dipping a silver wire into molten silver iodide is reported. The electrode was calibrated for silver and iodide ions and the measured electromotive force for various Ag(+) and I(-) concentrations was close to the theoretical within a few millivolts. Besides Ag(+) and I(-) ions, however, the electrode also responds to hypoiodous acid. Thus, the electrode was calibrated for HOI as well, and for that purpose a new method of hypoiodous acid preparation was developed. To explain the close to Nernstian electrode response for HOI and also the effect of hydrogen ion and iodine concentration on that response, the corrosion potential theory suggested earlier by Noszticzius et al. was modified and developed further. Following oscillations in the Briggs-Rauscher reaction with the new electrode the potential crosses the "solubility limit potential" (SLP) of silver iodide. Potentials below SLP are controlled by the concentration of I(-), but potentials above SLP are corrosion potentials determined by the concentration of HOI. Finally, the measured HOI oscillations are compared with calculated ones simulated by a model by Furrow et al.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp3015673 | DOI Listing |
Environ Sci Technol
January 2025
State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
Iodinated DBPs (I-DBPs), many more toxic than regulated chlorinated and/or brominated DBPs, are a major challenge in the supply of safe drinking water. While over 800 DBPs have been identified, the occurrence and precursors of toxic I-DBPs remain poorly understood. Herein, natural organic matter from two raw drinking waters was fractionated using ultrafiltration membranes into different groups based on molecular weight (MW).
View Article and Find Full Text PDFEnviron Sci Technol
December 2024
College of Architecture and Environment, Sichuan University, Chengdu 610000, China.
Periodate (PI) shows promising potential as an oxidant for wastewater treatment; however, its impact on the toxicity of wastewater remains unknown. Here, we found that with 100 μM PI addition, the cytotoxicity of wastewater increased from 4.8 to 7.
View Article and Find Full Text PDFChemosphere
November 2024
School of Chemical and Biological Engineering, Institute of Chemical Processes (ICP), Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea. Electronic address:
The rising prevalence of antibiotic-resistant infections worldwide necessitates the development of innovative antimicrobial systems for effective pathogen control. This study investigates the synergistic bactericidal effects of a combined system comprising povidone-iodine (PVP-I) and silver ions (Ag(I)). The PVP-I/Ag(I) system exhibited enhanced bactericidal activity against four key surrogate bacterial species: two Gram-negative bacteria, Escherichia coli (E.
View Article and Find Full Text PDFJ Hazard Mater
August 2024
Department of Civil and Environmental Engineering and Institute of Construction and Environmental Engineering, Seoul National University, Seoul, the Republic of Korea. Electronic address:
Peptide-bound histidines and imidazoles are important constituents of dissolved organic matter in water, and understanding the formation of halogenated disinfection byproduct (DBP) formation from these compounds during disinfection is important for ensuring a safe drinking water supply. Previous studies suggested that histidine has low reactivity with chlorine only; this study indicates that iodide substantially enhances histidine reactivity with the disinfectant at a time scale from days to hours. Mono- and di-iodinated histidines were identified as dominant transformation products with cumulative molar yields of 3.
View Article and Find Full Text PDFFree Radic Biol Med
August 2024
Dept. of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark. Electronic address:
At inflammatory sites, immune cells generate oxidants including H₂O₂. Myeloperoxidase (MPO), released by activated leukocytes employs H₂O₂ and halide/pseudohalides to form hypohalous acids that mediate pathogen killing. Hypochlorous acid (HOCl) is a major species formed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!