Neutral sugar radicals formed in DNA sugar-phosphate backbone are well-established as precursors of biologically important damage such as DNA strand scission and cross-linking. In this work, we present electron spin resonance (ESR) evidence showing that the sugar radical at C5' (C5'(•)) is one of the most abundant (ca. 30%) sugar radicals formed by γ- and Ar ion-beam irradiated hydrated DNA samples. Taking dimethyl phosphate as a model of sugar-phosphate backbone, ESR and theoretical (DFT) studies of γ-irradiated dimethyl phosphate were carried out. CH(3)OP(O(2)(-))OCH(2)(•) is formed via deprotonation from the methyl group of directly ionized dimethyl phosphate at 77 K. The formation of CH(3)OP(O(2)(-))OCH(2)(•) is independent of dimethyl phosphate concentration (neat or in aqueous solution) or pH. ESR spectra of C5'(•) found in DNA and of CH(3)OP(O(2)(-))OCH(2)(•) do not show an observable β-phosphorus hyperfine coupling (HFC). Furthermore, C5'(•) found in DNA does not show a significant C4'-H β-proton HFC. Applying the DFT/B3LYP/6-31G(d) method, a study of conformational dependence of the phosphorus HFC in CH(3)OP(O(2)(-))OCH(2)(•) shows that in its minimum energy conformation, CH(3)OP(O(2)(-))OCH(2)(•), has a negligible β-phosphorus HFC. On the basis of these results, the formation of radiation-induced C5'(•) is proposed to occur via a very rapid deprotonation from the directly ionized sugar-phosphate backbone, and the rate of this deprotonation must be faster than that of energetically downhill transfer of the unpaired spin (hole) from ionized sugar-phosphate backbone to the DNA bases. Moreover, C5'(•) in irradiated DNA is found to be in a conformation that does not exhibit β-proton or β-phosphorus HFCs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3360814PMC
http://dx.doi.org/10.1021/jp3023919DOI Listing

Publication Analysis

Top Keywords

sugar-phosphate backbone
20
dimethyl phosphate
16
dna
8
backbone dna
8
sugar radicals
8
radicals formed
8
directly ionized
8
c5'• dna
8
ionized sugar-phosphate
8
sugar-phosphate
5

Similar Publications

Streptococcus mutans, the causative agent of human dental caries, expresses a cell wall attached Serotype c-specific Carbohydrate (SCC) that is critical for cell viability. SCC consists of a polyrhamnose backbone of →3)α-Rha(1 → 2)α-Rha(1→ repeats with glucose (Glc) side-chains and glycerol phosphate (GroP) decorations. This study reveals that SCC has one predominant and two more minor Glc modifications.

View Article and Find Full Text PDF

A DNA phosphorothioation pathway via adenylated intermediate modulates Tdp machinery.

Nat Chem Biol

January 2025

Department of Gastroenterology, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, TaiKang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China.

In prokaryotes, the non-bridging oxygen in the DNA sugar-phosphate backbone can be enzymatically replaced by a sulfur atom, resulting in phosphorothioate (PT) modification. However, the mechanism underlying the oxygen-to-sulfur substitution remains enigmatic. In this study, we discovered a hypercompact DNA phosphorothioation system, TdpABC, in extreme thermophiles.

View Article and Find Full Text PDF

DNA Phosphorothioate Modification Systems and Associated Phage Defense Systems.

Annu Rev Microbiol

November 2024

Department of Gastroenterology, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China.

Article Synopsis
  • DNA phosphorothioate (PT) modification involves replacing a non-bridging oxygen in the DNA sugar-phosphate backbone with sulfur, enhancing the DNA’s resistance to degradation by nucleases.
  • Recent studies have uncovered the roles of PT modification enzymes and their functions across bacterial genomes, notably in distinguishing self DNA from foreign DNA to prevent autoimmunity.
  • The article also discusses potential applications of PT systems, such as creating phage-resistant bacteria, RNA editing, and improving methods for nucleic acid detection.
View Article and Find Full Text PDF

Non-canonical nucleobase pairs differ from canonical Watson-Crick (WC) pairs in their hydrogen bonding patterns. This study uses density functional theory with empirical dispersion correction to examine the stability and electronic properties of free adenine dimers stabilized by hydrogen bonds along the WC, Sugar (S), and Hoogsteen (H) edges. Dispersion correction is crucial for accurate interaction energy evaluation.

View Article and Find Full Text PDF

Hepatocellular carcinoma antibodies preferably identify nitro-oxidative-DNA lesions induced by 4-Chloro-orthophenylenediamine and DEANO.

Sci Rep

November 2024

Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India.

The widespread use of oxidative hair colouring cosmetics threatens public health. Phenylenediamine derivatives serve as the main pigment in permanent hair colours. They interact with biological macromolecules, altering their functional and structural physiology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!