Purpose: To detect the epileptogenic region causing epileptic spasms in an infant with tuberous sclerosis (TS).

Methods: We applied a multiple band frequency analysis to video electroencephalographic (EEG) recordings of the infant's scalp. We also performed computed tomography (CT), magnetic resonance imaging (MRI), single-photon emission computed tomography (SPECT), and magnetoencephalography (MEG) of the brain in order to ascertain the epileptic focus.

Results: During the periodic spasms, we identified fast ictal activity with frequencies of 60-70 Hz in the right centroparietal region. This region was part of the area surrounding the largest cortical tuber that was identified on CT and MRI and was located in the right frontal lobe. An area of increased blood perfusion that was observed with SPECT and dipole sources that were determined with interictal MEG were also located in this area. In addition, ictal frequency oscillations (FOs) with high gamma activity were identified over the cortex surrounding the largest tuber. After a lesionectomy of this tuber, the periodic spasms disappeared, and no FOs were detected over this area.

Conclusions: Scalp EEG, which identified the ictal onset zone by detecting fast activity that was suggestive of FOs, was useful for detecting the epileptogenic region in an infant with TS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3416714PMC
http://dx.doi.org/10.1186/1824-7288-38-15DOI Listing

Publication Analysis

Top Keywords

high gamma
8
gamma activity
8
area surrounding
8
cortical tuber
8
infant tuberous
8
tuberous sclerosis
8
epileptogenic region
8
computed tomography
8
periodic spasms
8
surrounding largest
8

Similar Publications

Background: Given the limited available data about to the number of vaccine doses administered over an extended time in Iran, the immune status of vaccinated individuals and any potential disparities in this regard among those who received different numbers of vaccine doses remain unknown. Therefore, this study aimed to assess humoral immunity of individuals who received different doses of the COVID-19 vaccines in Iran.

Methods: This study was conducted from February, 2022 to December 2023 including 605 vaccinated subjects.

View Article and Find Full Text PDF

Thermal-crosslinked acellular dermal matrix combined with adipose-derived stem cells to regenerate vascularized adipose tissue.

Biomed Mater

January 2025

Department of Plastic Surgery, Shanghai Tenth People's Hospital, Tongji University, No. 301, Middle Yanchang Road, Shanghai, 200011, CHINA.

The reconstruction of large-sized soft tissue defects remains a substantial clinical challenge, with adipose tissue engineering emerging as a promising solution. The acellular dermal matrix (ADM), known for its intricate spatial arrangement and active cytokine involvement, is widely employed as a scaffold in soft tissue engineering. Since ADM shares high similarity with decellularized adipose matrix, it holds potential as a substitute for adipose tissue.

View Article and Find Full Text PDF

γδ T cells producing either interleukin-17A (γδ cells) or interferon-γ (γδ cells) are generated in the mouse thymus, but the molecular regulators of their peripheral functions are not fully characterized. Here we established an Il17a-GFP:Ifng-YFP double-reporter mouse strain to analyze at unprecedented depth the transcriptomes of pure γδ cell versus γδ cell populations from peripheral lymph nodes. Within a very high fraction of differentially expressed genes, we identify a panel of 20 new signature genes in steady-state γδ cells versus γδ cells, which we further validate in models of experimental autoimmune encephalomyelitis and cerebral malaria, respectively.

View Article and Find Full Text PDF

Construction of a rodent neural network-skeletal muscle assembloid that simulate the postnatal development of spinal cord motor neuronal network.

Sci Rep

January 2025

Key Laboratory for Stem Cells and Tissue Engineering Ministry of Education, Guangdong Provincial Key Laboratory of Brain Function and Disease, Institute of Spinal Cord Injury, Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.

Neuromuscular diseases usually manifest as abnormalities involving motor neurons, neuromuscular junctions, and skeletal muscle (SkM) in postnatal stage. Present in vitro models of neuromuscular interactions require a long time and lack neuroglia involvement. Our study aimed to construct rodent bioengineered spinal cord neural network-skeletal muscle (NN-SkM) assembloids to elucidate the interactions between spinal cord neural stem cells (SC-NSCs) and SkM cells and their biological effects on the development and maturation of postnatal spinal cord motor neural circuits.

View Article and Find Full Text PDF

Chromosome-level genome assembly and characterization of Kaixuan 016: A high-oleic peanut variety with improved agronomic traits developed through gamma-radiation-assisted breeding.

Genomics

January 2025

Shennong Laboratory/ Henan Academy of Crop Molecular Breeding, Henan Academy of Agricultural Sciences/Henan Provincial Key Laboratory for Oil Crops Improvement, Zhengzhou 450002, China. Electronic address:

High-oleic peanuts are increasingly valued in agricultural production and consumer markets. Nevertheless, limited genomic information hinders the integration of genetic analyses and modern breeding strategies. This study details a chromosome-level genome assembly of Kaixuan 016, a high-oleic peanut variety developed through gamma-radiation-assisted breeding, exhibiting enhanced agronomic traits.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!