Glaucoma is the second leading cause of blindness worldwide, and also the most common optic neuropathy. The ultimate cause of vision loss in glaucoma is thought to be retinal ganglion cell (RGC) death. Neuroprotection of RGC is therefore an important goal of glaucoma therapy. Currently, glaucoma treatment relies on pharmacologic or surgical reduction of intraocular pressure (IOP). It is critical to develop treatment approaches that actively prevent the death of RGCs at risk in glaucoma. Neurotrophic factors have the ability to promote the survival and influence the growth of neurons. Neurotrophic factor deprivation has been proposed as one mechanism leading to RGC death in glaucoma. Effective neuroprotection in glaucoma likely requires the consistent availability of the active agent for prolonged periods of time. Biodegradable microspheres are especially attractive as drug delivery vehicles for a number of reasons. Sustained GDNF delivery by biodegradable microspheres offers significant neuroprotection to injured RGC in experimental glaucoma. PLGA microsphere-delivered GDNF represents an important neuroprotective strategy in the treatment of glaucomatous optic neuropathy and provides direction for further investigations of this hypothesis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3340642 | PMC |
http://dx.doi.org/10.3980/j.issn.2222-3959.2010.03.01 | DOI Listing |
Int J Biol Macromol
January 2025
Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt. Electronic address:
In recent decades, there has been a growing interest in the use of polysaccharides that exhibit biological activity for a wide range of innovative applications. This is due to their nontoxicity, biodegradability, biocompatibility, and therapeutic properties. The diverse properties of polysaccharides derived from marine algae make them a promising strategy for the construction of drug delivery systems (DDSs).
View Article and Find Full Text PDFBMC Cancer
January 2025
School of Life Science and Technology, Shandong Second Medical University, Weifang, Shandong, 261053, P.R. China.
Background: ABCB1 overexpression is a key factor in causing multidrug resistance (MDR). As a result, it is crucial to discover effective medications against ABCB1 to overcome MDR. Falnidamol, a tyrosine kinase inhibitor (TKI) targeting the epidermal growth factor receptor (EGFR), is currently in phase 1 clinical trials for the treatment of solid tumors.
View Article and Find Full Text PDFPharmaceutics
December 2024
College of Pharmacy, Xinjiang Second Medical College, Karamay 834000, China.
, an active component of Arnebia euchroma (Royle) Johnst., has remarkable pharmacological effects, particularly in its anti-tumour activity. Nonetheless, the specific targets and mechanisms of action remain to be further explored.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Pharmacology & Toxicology, Cancer Center & Research Institute, University of Mississippi Medical Center, Jackson, MS 39216, USA.
Oncolytic virotherapy has shown great promise in mediating targeted tumor destruction through tumor-selective replication and induction of anti-tumor immunity; however, obstacles remain for virus candidates to reach the clinic. These include avoiding neutralizing antibodies, preventing stimulation of the adaptive immune response during intravenous administration, and inducing sufficient apoptosis and immune activation so that the body's defense can work to eradicate systemic disease. We have developed a co-formulation of oncolytic viruses (OVs) with Imagent lipid-encapsulated, perfluorocarbon microbubbles (MBs) to protect the OVs from the innate and adaptive immune system.
View Article and Find Full Text PDFACS Appl Bio Mater
January 2025
Department of Radiology, University of Minnesota, Minneapolis, Minnesota 55455, United States.
Transarterial embolization (TAE) is an image-guided, minimally invasive procedure for treating various clinical conditions by delivering embolic agents to occlude diseased arteries. Conventional embolic agents focus on vessel occlusion but can cause unintended long-term inflammation and ischemia in healthy tissues. Next-generation embolic agents must exhibit biocompatibility, biodegradability, and effective drug delivery, yet some degradable microspheres degrade too quickly, leading to the potential migration of fragments into distal blood vessels causing off-target embolization.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!