Analysis of dental root apical morphology: a new method for dietary reconstructions in primates.

Anat Rec (Hoboken)

Institut de Paléoprimatologie, Paléontologie Humaine: Evolution et Paléoenvironnements, UMR-CNRS INEE - Université de Poitiers, Poitiers, France.

Published: June 2012

The reconstruction of paleo-diets is an important task in the study of fossil primates. Previously, paleo-diet reconstructions were performed using different methods based on extant primate models. In particular, dental microwear or isotopic analyses provided accurate reconstructions for some fossil primates. However, there is sometimes difficult or impossible to apply these methods to fossil material. Therefore, the development of new, independent methods of diet reconstructions is crucial to improve our knowledge of primates paleobiology and paleoecology. This study aims to investigate the correlation between tooth root apical morphology and diet in primates, and its potential for paleo-diet reconstructions. Dental roots are composed of two portions: the eruptive portion with a smooth and regular surface, and the apical penetrative portion which displays an irregular and corrugated surface. Here, the angle formed by these two portions (aPE), and the ratio of penetrative portion over total root length (PPI), are calculated for each mandibular tooth root. A strong correlation between these two variables and the proportion of some food types (fruits, leaves, seeds, animal matter, and vertebrates) in diet is found, allowing the use of tooth root apical morphology as a tool for dietary reconstructions in primates. The method was then applied to the fossil hominoid Khoratpithecus piriyai, from the Late Miocene of Thailand. The paleo-diet deduced from aPE and PPI is dominated by fruits (>50%), associated with animal matter (1-25%). Leaves, vertebrates and most probably seeds were excluded from the diet of Khoratpithecus, which is consistent with previous studies.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ar.22482DOI Listing

Publication Analysis

Top Keywords

root apical
12
apical morphology
12
tooth root
12
dietary reconstructions
8
reconstructions primates
8
fossil primates
8
paleo-diet reconstructions
8
penetrative portion
8
animal matter
8
reconstructions
6

Similar Publications

Oxidative stress is a major threat to plant growth and survival. To understand how plants cope with oxidative stress, we carried out a genetic screen for Arabidopsis (Arabidopsis thaliana) mutants with altered response to hydrogen peroxide (H2O2) in root growth. Herein, we report the characterization of one of the hypersensitive mutants obtained.

View Article and Find Full Text PDF

This study reports two cases of traumatised non-vital immature teeth (IT). Both underwent surgical and nonsurgical treatments after healing failure. In the first case, both maxillary central incisors underwent revascularization as the first treatment option.

View Article and Find Full Text PDF

Sodium hypochlorite (NaOCl), ethylenediaminetetraacetic acid (EDTA), and calcium hydroxide (Ca(OH)) are used in root canal treatment. However, further research is needed to assess their effectiveness at time points not considered in previous guidelines. This review complements the systematic review by Rossi-Fedele and Rödig (2023) by considering time points excluded by the latter.

View Article and Find Full Text PDF

Aim To compare the quality of obturation using WVC (warm vertical compaction), CLC (cold lateral compaction), injectable (iFill), and Thermafil (GuttaCore) techniques, along with hydraulic condensation of bioceramic (BC) sealer, and evaluating the percentage of gutta-percha (GP), sealer, and voids in simulated internal resorptive lesions, using an advanced stereomicroscope with ImageJ software (National Institutes of Health, Bethesda, MD, USA). Methods and material In this study, 40 freshly extracted maxillary incisors were collected, and endodontic instrumentation was done to working length using hand K-files. Simulated internal resorption cavities were created in the middle-apical third of the roots after horizontal sectioning and were re-cemented.

View Article and Find Full Text PDF

AhASRK1, a peanut dual-specificity kinase that activates the Ca-ROS-MAPK signalling cascade to mediate programmed cell death induced by aluminium toxicity via ABA.

Plant Physiol Biochem

January 2025

Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, College of Agriculture, GuangXi University, Nanning, 530004, China; National Demonstration Center for Experimental Plant Science Education/College of Agriculture, Nanning, 530004, China; Guangxi University Key Laboratory of Crop Cultivation and Tillage, Nanning, 530004, China. Electronic address:

Aluminium (Al)-induced programmed cell death (PCD) is thought to be a main cause of Al phytotoxicity. However, the underlying mechanism by which Al induces PCD in plants is unclear. In this study, we characterized the function of AhASRK1 (Aluminum Sensitive Receptor-like protein Kinase1), an Al-induced LRR-type receptor-like kinase gene.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!