Coarse-grained (CG) modeling has proven effective for simulating lipid bilayer dynamics on scales of biological interest. Modeling the dynamics of flexible membrane proteins within the bilayer, on the other hand, poses a considerable challenge due to the complexity of the folding or conformational landscape. In the present work, the multiscale coarse-graining method is applied to atomistic peptide-lipid "soup" simulations to develop a general set of CG protein-lipid interaction potentials. The reduced model was constructed to be compatible with recent solvent-free CG models developed for protein-protein folding and lipid-lipid model bilayer interactions. The utility of the force field was demonstrated by molecular dynamics simulation of the MsbA ABC transporter in a mixed DOPC/DOPE bilayer. An elastic network was parameterized to restrain the MsbA dimer in its open, closed and hydrolysis intermediate conformations and its impact on domain flexibility was examined. Conformational stability enabled long-time dynamics simulation of MsbA freely diffusing in a 25 nm membrane patch. Three-dimensional density analysis revealed that a shell of weakly bound "annular lipids" solvate the membrane accessible surface of MsbA and its internal substrate-binding chamber. The annular lipid binding modes, along with local perturbations in head group structure, are a function of the orientation of grooves formed between transmembrane helices and may influence the alternating access mechanism of substrate entry and translocation.

Download full-text PDF

Source
http://dx.doi.org/10.1002/prot.24108DOI Listing

Publication Analysis

Top Keywords

dynamics simulation
8
simulation msba
8
msba
5
coarse grain
4
grain lipid-protein
4
lipid-protein molecular
4
molecular interactions
4
interactions diffusion
4
diffusion msba
4
msba flippase
4

Similar Publications

For tolerant containment control of multi-agent systems, considering the challenges in modeling and the impact of actuator faults on system security and reliability, a finite index dynamic event-triggered policy iteration algorithm is proposed. This algorithm only requires input and output data, without relying on system models, and simultaneously considers the faults and energy consumption issues to improve the system reliability and save energy consumption. The conditions are provided to demonstrate the convergence and optimality of the algorithm, including a convergence speed, that is, the number of iterations required for convergence is finite.

View Article and Find Full Text PDF

Towards healthy sleep environments: Ambient, indoor, and personal exposure to PM and its implications in children's sleep health.

Environ Res

January 2025

Department of Civil, Environmental, & Architectural Engineering, Worcester Polytechnic Institute, Worcester, MA, United States. Electronic address:

The growing impact of climate change and escalating wildfire seasons has led to heightened ambient air pollution, potentially affecting children's sleep health. However, current epidemiological research often relies on outdoor weather data to model the environmental impacts on sleep health, potentially mischaracterizing the actual bedroom environment. To address these challenges, we conducted experiments to investigate the relationships among ambient, indoor, and personal exposure to PM concentrations and obstructive sleep apnea (OSA) in children.

View Article and Find Full Text PDF

Uncertainty analysis in river quality management considering failure probability: controllable and uncontrollable input pollutants.

Ecotoxicol Environ Saf

January 2025

Chair of Engineering Hydrology and Water Management, Technical University of Darmstadt, Darmstadt, Germany. Electronic address:

River quality management involves complex challenges due to inherent uncertainties in various parameters, especially when dealing with controllable and uncontrollable pollutants. This study integrates a finite volume approach, called SEF (symmetric exponential function), with Monte Carlo simulations in MATLAB to solve the advection-dispersion equation, focusing on evaluating river quality protection tools by considering failure probability (P). Critical specifications for maintaining reliable river ecosystem performance are identified.

View Article and Find Full Text PDF

A novel method for assessing the shedding of fibre in forensic science: Investigating the effects of washing.

Forensic Sci Int

January 2025

Leverhulme Research Centre for Forensic Science, Department of Science and Engineering, University of Dundee, Dundee DD1 4HN, UK.

The evaluation of the shedding capacity of a garment is crucial in forensic analysis to understand fibre transfer mechanisms during contact activities. While adhesive tapes are commonly used, the lack of standardised pressure application -often done manually- poses a challenge. In addition, while previous studies have examined the effects of washing on fibre evidence, there is a notable absence in the literature regarding its impact on garment shedding capacity.

View Article and Find Full Text PDF

Di(2-ethylhexyl) phthalate (DEHP) is a widespread ubiquitous phthalate environmental contaminant. The male reproductive toxicity (MRT) from exposure to DEHP and its main metabolite, mono(2-ethylhexyl) phthalate (MEHP), has been well documented. Fully elucidating its toxic mechanism and discovering effective antagonists are desirable means to reduce the health risks of DEHP.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!