Production of all-female populations in turbot can increase farmer's benefits since sexual dimorphism in growth in this species is among the highest within marine fish, turbot females reaching commercial size 3-6 months earlier than males. Puberty in males occurs earlier than in females, which additionally slows their growth. Thus, elucidating the mechanisms of sex determination and gonad differentiation is a relevant goal for turbot production. A ZZ/ZW sex determination mechanism has been suggested for this species, and four sex-related quantitative trait loci (QTL) were detected, the major one located in linkage group (LG) 5 and the three minor ones in LG6, LG8, and LG21. In the present work, we carried out a linkage analysis for several sex-related markers: (1) three anonymous sex-associated RAPD and (2) several candidate genes related to sex determination and gonad differentiation in other species (Sox3, Sox6, Sox8, Sox9, Sox17, Sox19, Amh, Dmrta2, Cyp19a, Cyp19b). We focused our attention on their co-localization with the major and minor sex-related QTL trying to approach to the master sex-determining gene of this species. Previously described growth-related QTL were also considered since the association observed between growth and sex determination in fish. Amh, Dmrta2, and one RAPD were located in LG5, while Sox9 and Sox17 (LG21), Cyp19b (LG6), and a second RAPD (LG8) co-mapped with suggestive sex-related QTL, thus supporting further analyses on these genes to elucidate the genetic basis of this relevant trait for turbot farming.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10126-012-9451-6 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!