BK polyomavirus (BKPyV) has recently been postulated as an emerging opportunistic pathogen of the human central nervous system (CNS), but it is not known whether specific strains are associated with the neurotropic character of BKPyV. The presence of BKPyV large T-antigen DNA was examined in 2406 cerebrospinal fluid (CSF) samples from neurological patients with suspected JC polyomavirus infection. Twenty patients had a large T-antigen DNA-positive specimen. The non-coding control region (NCCR) of the BKPyV strains amplified from CSF from these 20 patients, strains circulating in renal and bone marrow transplant recipients and from healthy pregnant women was sequenced. The archetypal conformation was the most prevalent in all groups and 14 of the neurological patients harboured archetypal strains, while the remaining six patients possessed BKPyV with rearranged NCCR similar to previously reported variants from non-neurological patients. Transfection studies in Vero cells revealed that five of six early and four of six late rearranged promoters of these CSF isolates showed significantly higher activity than the corresponding archetypal promoter. From seven of the neurological patients with BKPyV DNA-positive CSF, paired serum samples were available. Five of them were negative for BKPyV DNA, while serum from the remaining two patients harboured BKPyV strains with archetypal NCCR that differed from those present in their CSF. Our results suggest that NCCR rearrangements are not a hallmark for BKPyV neurotropism and the dissemination of a rearranged NCCR from the blood may not be the origin of BKPyV CNS infection.

Download full-text PDF

Source
http://dx.doi.org/10.1099/vir.0.042143-0DOI Listing

Publication Analysis

Top Keywords

neurological patients
12
bkpyv
10
patients
9
non-coding control
8
large t-antigen
8
bkpyv strains
8
patients harboured
8
remaining patients
8
rearranged nccr
8
strains
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!