Inhibition of butyrate uptake by the primary bile salt chenodeoxycholic acid in intestinal epithelial cells.

J Cell Biochem

Faculty of Medicine, Department of Biochemistry, U38-FCT, University of Porto, Porto, Portugal.

Published: September 2012

Colorectal cancer (CRC) is one of the most common cancers worldwide. Epidemiological and experimental studies suggest that bile acids may play a role in CRC etiology. Our aim was to characterize the effect of the primary bile acid chenodeoxycholic acid (CDCA) upon(14) C-BT uptake in tumoral (Caco-2) and non-tumoral (IEC-6) intestinal epithelial cell lines. A 2-day exposure to CDCA markedly and concentration-dependently inhibited (14) C-BT uptake by IEC-6 cells (IC(50) = 120 µM), and, less potently, by Caco-2 cells (IC(50) = 402 µM). The inhibitory effect of CDCA upon (14) C-BT uptake did not result from a decrease in cell proliferation or viability. In IEC-6 cells: (1) uptake of (14) C-BT involves both a high-affinity and a low-affinity transporter, and CDCA acted as a competitive inhibitor of the high-affinity transporter; (2) CDCA inhibited both Na(+)-coupled monocarboxylate cotransporter 1 (SMCT1)- and H(+)-coupled monocarboxylate transporter 1 (MCT1)-mediated uptake of (14) C-BT; (3) CDCA significantly increased the mRNA expression level of SMCT1; (4) inhibition of (14) C-BT uptake by CDCA was dependent on CaM, MAP kinase (ERK1/2 and p38 pathways), and PKC activation, and reduced by a reactive oxygen species scavenger. Finally, BT (5 mM) decreased IEC-6 cell viability and increased IEC-6 cell differentiation, and CDCA (100 µM) reduced this effect. In conclusion, CDCA is an effective inhibitor of (14) C-BT uptake in tumoral and non-tumoral intestinal epithelial cells, through inhibition of both H(+) -coupled MCT1- and SMCT1-mediated transport. Given the role played by BT in the intestine, this mechanism may contribute to the procarcinogenic effect of CDCA at this level.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcb.24172DOI Listing

Publication Analysis

Top Keywords

c-bt uptake
20
intestinal epithelial
12
cdca
10
uptake
8
primary bile
8
chenodeoxycholic acid
8
epithelial cells
8
uptake tumoral
8
iec-6 cells
8
cells ic50
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!