Chiral crystals from an achiral molecule: 4,6-di-O-benzyl-1,3-O-benzylidene-2-O-(4-methoxybenzyl)-myo-5-inosose.

Acta Crystallogr C

Division of Organic Chemistry, National Chemical Laboratory, Dr Homi Bhabha Road, Pashan, Pune 411 008, India.

Published: May 2012

The title achiral compound, C(35)H(34)O(7), crystallizes in the chiral monoclinic space group P2(1). The molecules are densely packed to form a helical assembly along the crystallographic twofold screw axis via C-H···O and C-H···π interactions. Interestingly, the unit-translated helical chains are loosely connected via a rather uncommon edge-to-edge Ph-H···H-Ph short contact (H···H = 2.33 Å).

Download full-text PDF

Source
http://dx.doi.org/10.1107/S0108270112010001DOI Listing

Publication Analysis

Top Keywords

chiral crystals
4
crystals achiral
4
achiral molecule
4
molecule 46-di-o-benzyl-13-o-benzylidene-2-o-4-methoxybenzyl-myo-5-inosose
4
46-di-o-benzyl-13-o-benzylidene-2-o-4-methoxybenzyl-myo-5-inosose title
4
title achiral
4
achiral compound
4
compound c35h34o7
4
c35h34o7 crystallizes
4
crystallizes chiral
4

Similar Publications

In the field of chiral smectic liquid crystals, orthoconic antiferroelectric liquid crystals (OAFLCs) have attracted the interest of the scientific community due to the very high tilt angle, close to 45°, and the consequent optical properties. In the present study, the first H NMR investigation is reported on two samples, namely 3F5HPhF9 and 3F7HPhF8, showing the phase sequence isotropic-SmC*-SmC* and the phase sequence isotropic-SmA-SmC*-SmC*, respectively, when cooling from the isotropic to the crystalline phases. To this aim, the liquid crystals were doped with a small amount of deuterated probe biphenyl-4,4'-diol-d.

View Article and Find Full Text PDF

Dynamic control of bound states in the continuum (BICs) is usually achieved by engineering structural geometries of lossless optical systems, leading to a passive nature for most current BIC devices. Introducing materials with tunable permittivity, i.e.

View Article and Find Full Text PDF

Partially Bonded Crystals: A Pathway to Porosity and Polymorphism.

ACS Nano

January 2025

Institut für Theoretische Physik, TU Wien, Wiedner Hauptstraße 8-10, A-1040 Wien, Austria.

In recent years, experimental and theoretical investigations have shown that anisotropic colloids can self-organize into ordered porous monolayers, where the interplay of localized bonding sites, so-called patches, with the particle's shape is responsible for driving the systems away from close-packing and toward porosity. Until now it has been assumed that patchy particles have to be fully bonded with their neighboring particles for crystals to form, and that, if full bonding cannot be achieved due to the choice of patch placement, disordered assemblies will form instead. In contrast, we show that by deliberately displacing the patches such that full bonding is disfavored, a different route to porous crystalline monolayers emerges, where geometric frustration and partial bonding are decisive process.

View Article and Find Full Text PDF

Symmetry Breaking: Case Studies with Organic Cage-Racemates.

Acc Chem Res

January 2025

School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.

ConspectusSymmetry is a pervasive phenomenon spanning diverse fields, from art and architecture to mathematics and science. In the scientific realms, symmetry reveals fundamental laws, while symmetry breaking─the collapse of certain symmetry─is the underlying cause of phenomena. Research on symmetry and symmetry breaking consistently provides valuable insights across disciplines, from parity violation in physics to the origin of homochirality in biology.

View Article and Find Full Text PDF

Helical Quintulene: Synthesis, Chirality, and Supramolecular Assembly.

Angew Chem Int Ed Engl

January 2025

Xiamen University, Department of Chemistry, Siminnan Road 422, 361005, Xiamen, CHINA.

Quintulene is a quintuply symmetrical cycloarene with a positively curved molecular geometry. First described by Staab and Sauer in 1984, its successful synthesis was not achieved until 2020. Due to the challenges posed by its positive curvature, structural extensions of quintulene have been studied rarely.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!