Novel insecticidal anthranilamides with elaborated sulfur-containing groups are described. The synthesis of compounds with functional groups such as sulfoximines and scarcely reported groups such as sulfonimidoyl hydrazides and hydroxylamides, their in vitro and in vivo biological activity as well as their physical properties are reported.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2012.03.106DOI Listing

Publication Analysis

Top Keywords

novel diamide
4
diamide insecticides
4
insecticides sulfoximines
4
sulfoximines sulfonimidamides
4
sulfonimidamides sulfonimidoyl
4
sulfonimidoyl derivatives
4
derivatives novel
4
novel insecticidal
4
insecticidal anthranilamides
4
anthranilamides elaborated
4

Similar Publications

Pyrazinamide (PZA) is a critical component of tuberculosis first-line therapy due to its ability to kill both growing and non-replicating drug-tolerant populations of within the host. Recent evidence indicates that PZA acts through disruption of coenzyme A synthesis under conditions that promote cellular stress. In contrast to its bactericidal action , PZA shows weak bacteriostatic activity against in axenic culture.

View Article and Find Full Text PDF

Since the commercialization of diamide insecticides, including chlorantraniliprole, in 2007, the overuse of diamide insecticides for over a decade has resulted in excessive chlorantraniliprole resistance in , causing continuous economic losses. While RyR target-site mutations and detoxification enzymes such as cytochrome P450 have been studied as the leading causes of resistance, previous studies, including functional research and synergistic tests, have not confirmed a clear correlation between these factors and the development of resistance. Thus, transcriptome analysis was employed to investigate alternative strategies beyond mutation(s) in RyR or metabolic factors involving detoxification pathways that allow diamide-resistance to counteract the calcium ion imbalances induced by chlorantraniliprole effectively.

View Article and Find Full Text PDF

Background: NADPH is an essential co-factor supporting the function of enzymes that participate in both inflammatory and anti-inflammatory pathways in myeloid cells, particularly macrophages. Although individual NADPH-dependent pathways are well characterized, how these opposing pathways are co-regulated to orchestrate an optimized inflammatory response is not well understood. To investigate this, techniques to track the consumption of NADPH need to be applied.

View Article and Find Full Text PDF

In searching for novel insecticide lead, 20 new meta-diamide compounds containing triazole were designed and synthesized regarding cyproflanilide as lead compound. All the compounds were characterized by H NMR, C NMR, and High-resolution mass spectra (HR MS). In preliminary bioassay, we found that one of the compounds: N-(cyclopropylmethyl)-N-(5-((2,6-dibromo-4-(1,2,2,2-tetrafluoro-1-(trifluoromethyl)ethyl)phenyl)carbamoyl)-2-(1H-1,2,4-triazol-1-yl)phenyl)-6-(trifluoromethyl) nicotinamide (16a) had high activity against the target organism Plutella xylostella at 1 mg/L and against the target organism Mythimna separata at 2 mg/L.

View Article and Find Full Text PDF

In pursuit of potent and environmentally benign insecticides targeting the γ-aminobutyric acid (GABA) receptor, a series of novel meta-diamide compounds bearing a phthalimide were rationally designed and synthesized. Bioassay studies revealed that most of the target compounds exhibited promising larvicidal activity against () and (). Notably, the most active compound displayed exceptional potency with LC values of 3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!