Local electrode atom probe analysis of silicon nanowires grown with an aluminum catalyst.

Nanotechnology

Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802, USA.

Published: June 2012

Local electrode atom probe (LEAP) tomography of Al-catalyzed silicon nanowires synthesized by the vapor–liquid–solid method is presented. The concentration of Al within the Al-catalyzed nanowire was found to be 2 × 10(20) cm(-3), which is higher than the expected solubility limit for Al in Si at the nanowire growth temperature of 550°C. Reconstructions of the Al contained within the nanowire indicate a denuded region adjacent to the Al catalyst/Si nanowire interface, while Al clusters are distributed throughout the rest of the silicon nanowire.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0957-4484/23/21/215205DOI Listing

Publication Analysis

Top Keywords

local electrode
8
electrode atom
8
atom probe
8
silicon nanowires
8
nanowire
5
probe analysis
4
analysis silicon
4
nanowires grown
4
grown aluminum
4
aluminum catalyst
4

Similar Publications

Purpose: Cochlear implantation (CI) surgery is essential for restoring hearing in individuals with severe sensorineural hearing loss. Accurate placement of the electrode within the cochlea is essential for successful auditory outcomes and minimizing complications. This study aims to analyze the relationship between the round window niche (RWN) alignment, its visibility during surgery, and the impact on surgical techniques and outcomes.

View Article and Find Full Text PDF

This study investigated the intra-day and inter-day reliability of electrical impedance myography (EIM) components and explored sex and regional differences in healthy adults' anterior thigh muscles. Using a multifrequency device, impedance values across various frequencies, alongside 50-kHz resistance (R), reactance (Xc), and phase angle (PhA) were assessed in both sexes and at whole anterior thigh, proximal and distal regions. Findings revealed excellent reliability (ICC > 0.

View Article and Find Full Text PDF

Promoting defect formation and inhibiting hydrogen evolution by S-doping NiFe layered double hydroxide for electrocatalytic reduction of nitrate to ammonia.

Water Res

December 2024

Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China. Electronic address:

Activation of HO cleavage for H* production by defect engineering eliminates the insufficient supply of protons in the NORR process under neutral conditions. However, it remains challenging to precisely control the defect formation for optimizing the equilibrium between H* production and H* binding. Here, we propose a strategy to boost defect generation through S-doping induced NiFe-LDH lattice distortion, and successfully optimize the balance of H* production and binding.

View Article and Find Full Text PDF

Objective: Patients with drug-resistant epilepsy (DRE) are often referred for phase II evaluation with stereo-electroencephalography (SEEG) to identify a seizure onset zone for guiding definitive treatment. For patients without a focal seizure onset zone, neuromodulation targeting the thalamic nuclei-specifically the centromedian nucleus, anterior nucleus of the thalamus, and pulvinar nucleus-may be considered. Currently, thalamic nuclei selection is based mainly on the location of seizure onset, without a detailed evaluation of their network involvement.

View Article and Find Full Text PDF

Enhancing transport and chemomechanical properties in cathode composites is crucial for the performance of solid-state batteries. Our study introduces the filler-aligned structured thick (FAST) electrode, which notably improves mechanical strength and ionic/electronic conductivity in solid composite cathodes. The FAST electrode incorporates vertically aligned nanoconducting carbon nanotubes within an ion-conducting polymer electrolyte, creating a low-tortuosity electron/ion transport path while strengthening the electrode's structure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!