This paper presents a realistic model that explicitly takes into account the electrostatic coupling between the nanocrystals of a disordered layer constituting the floating gate of a non-volatile memory. A statistical study of the neighborhood of a given nanocrystal is carried out, leading to the mean number of neighboring nanocrystals as a function of the radius of the central nanocrystal. We show that the empty neighborhood of every nanocrystal can be represented by an equivalent torus ring in the previous model of a single nanocrystal. Then the effects of charged nanocrystals are taken into account by an appropriate rigid shift of the energy levels of the central nanocrystal. The proposed model is validated by statistical comparisons with exact 3D computations, and the influence of the electrostatic coupling is analyzed and discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/0957-4484/23/21/215203 | DOI Listing |
In this paper, poly(diallyldimethylammonium chloride)(PDDA)/poly(sodium styrene sulfonate)(PSS) nanomembranes were deposited on the surface of long-period fiber gratings (LPFG) using the electrostatic layer-by-layer (LBL) assembly method, and the effect of NaCl on the modulation of LPFG double peaks by PDDA/PSS nanomembranes was investigated. The principle behind the emergence of double peaks was first explored using coupled mode theory, revealing that changes in the mode effective refractive index(RI) occur as the number of nanomembrane layers increases. The experimental results showed that under the conditions of PDDA with NaCl/PSS without NaCl and PDDA without NaCl/PSS with NaCl, double peaks do not appear in the spectra of LPFG as the number of thin film layers increases.
View Article and Find Full Text PDFAnal Methods
January 2025
Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
Adenosine triphosphate (ATP) is crucial for cellular activity. The need for ATP detection in the field of biomedicine is rapidly increasing. Several biosensor-based approaches have been developed as a result of the growing demand for ATP detection.
View Article and Find Full Text PDFFood Chem
January 2025
China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang 212013, China. Electronic address:
Flexible surface-enhanced Raman scattering (SERS) sensors offer a promising solution for the rapid in situ monitoring of food safety. The sensor's capability to furnish quantitative detection and retain recyclability is crucial in practical applications. This study proposes a self-cleaning flexible SERS sensor, augmented with an intelligent algorithm designed for expeditious in situ and non-destructive thiram detection on apples.
View Article and Find Full Text PDFJ Environ Manage
January 2025
State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China.
The degradation of antibiotic wastewater by low-temperature plasma and the removal of excess nitrogen by biological denitrification with Pseudomonas stutzeri (P. stutzeri) reducing secondary pollution has rarely been reported. In this study, iron and phenolic resin doped carbon-based porous nanofiber membranes are prepared (named RFe-CNF) by electrostatic spinning technique, where the optimization of structure and composition endows low-temperature plasma system better catalyst performance than that of without catalyst (a 58% increase).
View Article and Find Full Text PDFWater Res
January 2025
State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China. Electronic address:
Electrochemical reduction technology is a promising method for addressing the persistent contamination of groundwater by chlorinated hydrocarbons. Current research shows that electrochemical reductive dechlorination primarily relies on direct electron transfer (DET) and active hydrogen (H) mediated indirect electron transfer processes, thereby achieving efficient dechlorination and detoxification. This paper explores the influence of the molecular charge structure of chlorinated hydrocarbons, including chlorolefin, chloroalkanes, chlorinated aromatic hydrocarbons, and chloro-carboxylic acid, on reductive dechlorination from the perspective of molecular electrostatic potential and local electron affinity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!