The reaction of various [Os(L)(2)(L')](2+) complexes (where L and L' are phenanthroline, diphosphine or diarsine ligands) and organic reducing agents after chemical or electrochemical oxidation of the reactants produces an emission of light corresponding to MLCT transitions. In certain instances, the emission was greater than that of [Ru(bipy)(3)](2+), but the relative signals were dependent on many factors, including reagent concentration, mode of oxidation, reducing agent and the sensitivity of the photodetector over the wavelength range.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c2an35446bDOI Listing

Publication Analysis

Top Keywords

complexes phenanthroline
8
phenanthroline diphosphine
8
diphosphine diarsine
8
diarsine ligands
8
chemiluminescence osmiumii
4
osmiumii complexes
4
ligands reaction
4
reaction [osl2l']2+
4
[osl2l']2+ complexes
4
ligands organic
4

Similar Publications

The interaction of sodium phytate hydrate CHOP·xNa·yHO (phytNa) with Cu(OAc)·HO and 1,10-phenanthroline (phen) led to the anionic tetranuclear complex [Cu(HO)(phen)(phyt)]·2Na·2NH·32HO (), the structure of the latter was determined by X-ray diffraction analysis. The phytate is completely deprotonated; six phosphate fragments (with atoms P1-P6) are characterized by different spatial arrangements relative to the cyclohexane ring (1a5e conformation), which determines two different types of coordination to the complexing agents-P1 and P3, P4, and P6 have monodentate, while P2 and P5 are bidentately bound to Cu cations. The molecular structure of the anion complex is stabilized by a set of strong intramolecular hydrogen bonds involving coordinated water molecules.

View Article and Find Full Text PDF

A novel coordination motif comprising [4]helicene fused with pyrazino-phenanthroline (H4PP) has been synthesized and reacted with ReCl(CO)5 to yield its rhenium(I) complex (Re-H4PP). Absorption and emission spectroscopic analysis conducted in dichloromethane and 2-methyltetrahydrofuran reveals that combining pyrazino-phenanthroline with helicene visibly affects the photophysical attributes of both the resulting ligand and its Re(I) complex as compared to their non-helicene analogues, and even more importantly leads to relatively high photoluminescence quantum yield values, especially in the case of H4PP (29%). Chiroptical studies through electronic circular dichroism and circularly polarized luminescence performed on enantiomerically enriched samples of Re-H4PP show the chiral nature of low-energy excited states affording notable glum values that amplify at cryogenic temperatures.

View Article and Find Full Text PDF

We present the synthesis, structural analysis, and remarkable reactivity of the first carbon nanohoop that fully incorporates ferrocene in the macrocyclic backbone. The high strain imposed on the ferrocene by the curved nanohoop structure enables unprecedented photochemical reactivity of this otherwise photochemically inert metallocene complex. Visible light activation triggers a ring-opening of the nanohoop structure, fully dissociating the Fe-cyclopentadienyl bonds in the presence of 1,10-phenanthroline.

View Article and Find Full Text PDF

Photoactive complexes of bioessential 3d metals, activable within the phototherapeutic window (650-900 nm), have gained widespread interest due to their therapeutic potential. Herein, we report the synthesis, characterization, and light-enhanced anticancer and antibacterial properties of four new dinuclear Co(II) complexes: [Co(phen)(cat)] (Co-1), [Co(dppz)(cat)] (Co-2), [Co(phen)(esc)] (Co-3), and [Co(dppz)(esc)] (Co-4). In these complexes, phen (1,10-phenanthroline) and dppz (dipyrido[3,2-:2',3'-]phenazine) act as neutral N,N-donor ligands, while cat and esc serve as O,O-donor catecholate ligands derived from catechol (1,2-dihydroxybenzene) and esculetin (6,7-dihydroxy coumarin).

View Article and Find Full Text PDF

N,O-Heterocyclic ligands such as 2,9-diamide-1,10-phenanthroline dicarboxamide (DAPhen) and bis-lactam-1,10-phenanthroline (BLPhen) exhibit excellent separation performance for Am(III) and Eu(III) in high-level liquid waste. However, DAPhen-based ligands show poor extraction capacity, and BLPhen ligands suffer from decomposition in acidic solutions, which hinders their application in practical separation processes. To develop ligands with superior performance, two new completely preorganized and highly stabilized bis-lactam-1,10-phenanthroline (BLPhen) ligands with varying alkyl chain lengths were synthesized, demonstrating exceptional extraction and separation of Am(III) from Eu(III) with maximum separation factors of 68 and 53, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!