MALDI-TOF MS (matrix-assisted laser desorption/ionization time-of-flight mass spectrometry) imaging is used to characterize novel lipid implants allowing for controlled drug delivery. Importantly, this innovative technique provides crucial information on the inner structure of the implants before and after exposure to the release medium and does not require the addition of marker substances. Implants were prepared by extrusion at room temperature. Thus, in contrast to hot-melt extruded systems, the risks of drug inactivation and solid state transformations of the lipid matrix former are reduced. Hydrogenated/hardened soybean oil and glyceryl tristearate were studied as lipids and propranolol hydrochloride and theophylline as drugs, exhibiting significantly different solubility in water. The implants were also characterized by optical microscopy, differential scanning calorimetry, water uptake and lipid erosion studies, mathematical modeling as well as in vitro drug release measurements. Importantly, broad spectra of drug release patterns with release periods ranging from a few days up to several months could easily be provided when varying the initial drug content and type of lipid, irrespective of the type of drug. The diameter of the implants can be as small as 1mm, facilitating injection. MALDI-TOF MS imaging revealed homogeneous macroscopic drug distributions within the systems, but steep drug concentration gradients in radial and axial direction at the lower micrometer level, indicating drug- and lipid-rich domains. As the implants do not significantly swell, local irritation upon administration due to mechanical stress can be expected to be limited. Good agreement between experimentally measured and theoretically calculated drug release kinetics revealed that diffusional mass transport plays a major role for the control of drug release from this type of advanced drug delivery systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jconrel.2012.04.017 | DOI Listing |
J Neurosurg
January 2025
Departments of1Neurological Surgery and.
The infiltrative and diffuse nature of gliomas makes complete resection unfeasible. Unfortunately, regions of brain parenchyma with residual, infiltrative tumor are protected by the blood-brain barrier (BBB), making systemic chemotherapies, small-molecule inhibitors, and immunotherapies of limited efficacy. Low-frequency focused ultrasound (FUS) in combination with intravascular microbubbles can be used to disrupt the BBB transiently and selectively within the tumor and peritumoral region.
View Article and Find Full Text PDFPLoS One
January 2025
Centre for Regenerative Medicine and Devices, University of Brighton, Brighton, United Kingdom.
Diabetic foot, leg ulcers and decubitus ulcers affect millions of individuals worldwide leading to poor quality of life, pain and in several cases to limb amputations. Despite the global dimension of this clinical problem, limited progress has been made in developing more efficacious wound dressings, the design of which currently focusses on wound protection and control of its exudate volume. The present in vitro study systematically analysed seven types of clinically-available wound dressings made of different biomaterial composition and engineering.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Pediatrics, Quanzhou First Hospital, Quanzhou, Fujian Province, China.
Purpose: To systematically evaluate the efficacy and safety of creatine phosphate sodium in the treatment of viral myocarditis, and to provide guidance for its clinical treatment.
Methods: We conducted a search of The Cochrane Library, PubMed, EMbase, and Web of Science databases to retrieve randomized controlled trials (RCTs) on the use of creatine phosphate sodium (CPS) in the treatment of viral myocarditis. The search was conducted up to April 2024.
Immun Inflamm Dis
January 2025
Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.
Background: Sepsis is associated with myocardial injury and early mortality. The innate immune receptor Toll-like receptor 4 (TLR4) can recognize pathogen-associated-molecular-patterns (PAMPs) and damage-associated molecular patterns (DAMPs); the latter are released during tissue injury. We hypothesized that TLR4 inhibition reduces proinflammatory signaling and cytokine release in: (1) LPS or Escherichia coli-treated isolated mouse heart; (2) LPS-treated mouse primary adult cardiomyocytes; and (3) the isolated heart during ischemia-reperfusion.
View Article and Find Full Text PDFImmun Inflamm Dis
January 2025
State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
Background: Coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a major concern due to its astonishing prevalence and high fatality rate, especially among elderly people. Patients suffering from COVID-19 may exhibit immunosuppression in the initial stage of infection, while a cytokine storm can occur when the disease progresses to a severe stage. This inopportune immune rhythm not only makes patients more susceptible to the virus but also leads to numerous complications resulting from the excessive production of inflammatory factors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!