Blast-induced neurotrauma is a major concern because of the complex expression of neuropsychiatric disorders after exposure. Disruptions in neuronal function, proximal in time to blast exposure, may eventually contribute to the late emergence of clinical deficits. Using magic angle spinning ¹H MRS and a rodent model of blast-induced neurotrauma, we found acute (24-48 h) decreases in succinate, glutathione, glutamate, phosphorylethanolamine and γ-aminobutyric acid, no change in N-acetylaspartate and increased glycerophosphorylcholine, alterations consistent with mitochondrial distress, altered neurochemical transmission and increased membrane turnover. Increased levels of the apoptotic markers Bax and caspase-3 suggested active cell death, consistent with increased FluoroJade B staining in the hippocampus. Elevated levels of glial fibrillary acidic protein suggested ongoing inflammation without diffuse axonal injury measured by no change in β-amyloid precursor protein. In conclusion, blast-induced neurotrauma induces a metabolic cascade associated with neuronal loss in the hippocampus in the acute period following exposure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/nbm.2805 | DOI Listing |
J Neurotrauma
October 2024
Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA.
It is well documented that service members are exposed to repeated low-level blast overpressure during training with heavy weapons such as artillery, mortars and explosive breaching. Often, acute symptoms associated with these exposures are transient but cumulative effect of low-level repeated blast exposures (RBEs) can include persistent deficits in cognitive and behavioral health. Thus far, reliable diagnostic biomarkers which can guide countermeasure strategies have not been identified.
View Article and Find Full Text PDFFront Genet
September 2024
Medical Readiness Systems Biology Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States.
Introduction: Blast injury has been implicated as the major cause of traumatic brain injury (TBI) and ocular system injury, in military operations in Iraq and Afghanistan. Soldiers exposed to traumatic stress also have undiagnosed, chronic vision problems. Here we hypothesize that excessive intake of ω-6 fatty acid linoleic acid (LA) and insufficiency of dietary long chain ω-3 polyunsaturated fatty acids (PUFAs, e.
View Article and Find Full Text PDFMol Neurobiol
September 2024
Radiological, Nuclear and Imaging Sciences (RNAIS), Institute of Nuclear Medicine and Allied Science (INMAS), DRDO, New Delhi, 110054, India.
Blast-induced trauma is emerging as a serious threat due to its wide pathophysiology where not only the brain but also a spectrum of organs is being affected. In the present study, we aim to identify the plasma-based metabolic dysregulations along with the associated temporal changes at 5-6 h, day 1 and day 7 post-injury in a preclinical animal model for blast exposure, through liquid chromatography-mass spectrometry (LC-MS). Using significantly advanced metabolomic and statistical bioinformatic platforms, we were able to elucidate better and unravel the complex networks of blast-induced neurotrauma (BINT) and its interlinked systemic effects.
View Article and Find Full Text PDFJ Neurotrauma
November 2024
Department of Medical Imaging, College of Biomedical Engineering, Army Medical University, Chongqing, China.
Diffusion tensor imaging (DTI) has emerged as a promising neuroimaging tool for detecting blast-induced mild traumatic brain injury (bmTBI). However, lack of refined acute-phase monitoring and reliable imaging biomarkers hindered its clinical application in early diagnosis of bmTBI, leading to potential long-term disability of patients. In this study, we used DTI in a rat model of bmTBI generated by exposing to single lateral blast waves (151.
View Article and Find Full Text PDFJ Fungi (Basel)
May 2024
Wound Infections Department, Bacterial Diseases Branch, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA.
Wound-invasive fungal diseases (WIFDs), especially mucormycosis, have emerged as life-threatening infections during recent military combat operations. Many combat-relevant fungal pathogens are refractory to current antifungal therapy. Therefore, animal models of WIFDs are urgently needed to investigate new therapeutic solutions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!