Potential immunostimulatory effects of orally administered β-glucan were investigated in combination with immersion vaccination against enteric redmouth disease caused by Yersinia ruckeri in rainbow trout (Oncorhynchus mykiss). A linear, unbranched and pure (purity ≥98%) β-1,3-glucan (syn. paramylon) from the alga Euglena gracilis was applied at an inclusion level of 1% β-glucan in feed administered at a rate of 1% biomass day(-1) for 84 consecutive days. Fish were vaccinated after two weeks of experimental feeding and bath challenged with live Y. ruckeri six weeks post-vaccination. Blood and head kidney were sampled at day 0, 13 (1 day pre-vaccination), 15, 55, 59 (day 3 post-challenge (p.c.)), 70 and 84. Vaccination induced significantly increased survival p.c., whereas the β-glucan had no effect on survival in either unvaccinated or vaccinated fish. Expression in head kidney of genes related to the acute phase response, i.e. interleukin-1β (IL-1β), serum amyloid A (SAA), precerebellin, and hepcidin, was significantly different in vaccinated fish receiving β-glucan compared to vaccinated controls at day 3 p.c., while no effect of β-glucan was observed among unvaccinated fish. Significant interaction between β-glucan and vaccination was found for the regulation of IL-1β, tumour necrosis factor-α, interferon-γ, SAA, precerebellin and hepcidin p.c. For SAA, the significant effect of β-glucan in vaccinated fish persisted at day 14 p.c. and 28 p.c. The difference in gene expression among vaccinated fish was mainly observed as down-regulations in vaccinated, β-glucan fed fish compared to up-regulations or no regulation in vaccinated controls. Slightly increased levels of plasma lysozyme activity were found in fish (both unvaccinated and vaccinated) receiving β-glucan at day 3 p.c. compared to control fed groups. This was associated with a faster clearance of Y. ruckeri in unvaccinated fish receiving β-glucan. In contrast to the trend towards a beneficial effect of β-glucan on plasma lysozyme activity, a trend towards suppression of plasma antibodies was seen in both unvaccinated and vaccinated fish receiving β-glucan. However, the effects of β-glucan were not reflected in the survival curves, and the differences seen in plasma lysozyme activity and antibody levels may have counteracted and set off each other as well as counteracted any potential effect represented by the differences in gene expression found.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.fsi.2012.04.009 | DOI Listing |
Fish Shellfish Immunol
January 2025
Department of Marine Biology & Aquaculture, College of Marine Science, Gyeongsang National University, 455, Tongyeong, 650-160, Republic of Korea. Electronic address:
Dendritic cells (DCs) play a pivotal role in activating naïve T-cells and bridging innate and adaptive immunity. This study aimed to identify and characterize CD83 and CD276 as potential markers for DCs in olive flounder (Paralichthys olivaceus). Specific antibodies against these markers were developed and used to analyze their distribution in peripheral blood leukocytes (PBLs) and intestinal tissues.
View Article and Find Full Text PDFFish Shellfish Immunol
January 2025
Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Aquaculture Engineering Technology Research Center, College of Fisheries, Southwest University, Chongqing 400715, China. Electronic address:
Aeromonas veronii is a zoonotic pathogen that is commonly found in various aquatic environments and causes serious damage to the aquaculture industry. Anti-virulence strategies based on mutating the virulence factors are important antibiotic alternative methods against A. veronii infection.
View Article and Find Full Text PDFFish Shellfish Immunol
January 2025
Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran; Research Institute for Biotechnology and Bioengineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
Infectious hematopoietic necrosis virus (IHNV) is a serious pathogen in the salmonid aquaculture industry and leads to economic losses in the world. This study aimed to develop a new oral DNA vaccine designed to protect rainbow trout against infection by IHNV. Fish were administered via the oral route by the attenuated Salmonella enterica serovar Typhimurium as a carrier of pcDNA3.
View Article and Find Full Text PDFFish Shellfish Immunol
January 2025
Department of Biological Sciences, Kongju National University, Gongju 32588, South Korea. Electronic address:
Single-cycle viruses hold great promise as fish viral vaccines due to their high protective efficacy. Although the efficacy of the vaccine in olive flounder and rainbow trout has been proven through previous research, safety must be additionally proven considering the environment of use for commercialization. This study comprehensively assesses the safety of rVHSV-GΔTM and its impact on both the host and the surrounding environment, including the coastal habitat of nearby species and seawater.
View Article and Find Full Text PDFFish Shellfish Immunol
January 2025
Sanya Institute of Breeding and Multiplication, School of Marine Biology and Fisheries, Collaborative Innovation Center of Marine Science and Technology, Hainan University, Hainan, China; Engineering Research Center of Hainan Province for Blue Carbon and Coastal Wetland Conservation·and·Restoration, China; International Joint Research Center of Hainan Province for Blue Carbon and Coastal Wetland, China. Electronic address:
Vibrio harveyi is a common sort of pathogenic bacterium in marine, which annually gives rise to huge financial losses in aquaculture industry. Flagellin is one of the important virulence factors for bacteria, but meanwhile it is also a preferable vaccine candidate. In this study, we have identified and analyzed two flagellin antigens of V.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!