Introduction: A proper cavernous endothelial cell culture system would be advantageous for the study of the pathophysiologic mechanisms involved in endothelial dysfunction and erectile dysfunction (ED).
Aim: To establish a nonenzymatic technique, which we termed the "Matrigel-based sprouting endothelial cell culture system," for the isolation of mouse cavernous endothelial cells (MCECs) and an in vitro model that mimics in vivo situation for diabetes-induced ED.
Methods: For primary MCEC culture, mouse cavernous tissue was implanted into Matrigel and sprouting cells from the tissue were subcultivated. To establish an in vitro model for diabetes-induced ED, the primary cultured MCECs were exposed to a normal-glucose (5 mmoL) or a high-glucose (30 mmoL) condition for 48 hours.
Main Outcome Measures: The purity of isolated cells was determined by fluorescence-activated cell sorting analysis. MCECs incubated under the normal- or the high-glucose condition were used for Western blot, cyclic guanosine monophosphate (cGMP) quantification, and in vitro angiogenesis assay.
Results: We could consistently isolate high-purity MCECs (about 97%) with the Matrigel-based sprouting endothelial cell culture system. MCECs were subcultured up to the fifth passage and no significant changes were noted in endothelial cell morphology or purity. The phosphorylation of Akt and eNOS and the cGMP concentration were significantly lower in MCECs exposed to high glucose than in those exposed to normal glucose. MCECs exposed to the normal-glucose condition formed well-organized capillary-like structures, whereas derangements in tube formation were noted in MCECs exposed to high glucose. The protein expression of transforming growth factor-β1 (TGF-β1) and phospho-Smad2 was significantly increased by exposure to high glucose.
Conclusion: The Matrigel-based sprouting endothelial cell culture system is a simple, technically feasible, and reproducible technique for isolating pure cavernous endothelial cells in mice. An in vitro model for diabetic ED will be a valuable tool for evaluating the angiogenic potential of novel endogenous or synthetic modulators.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1743-6109.2012.02752.x | DOI Listing |
Breast Cancer Res
January 2025
College of Pharmacy, Seoul National University, Seoul, 08826, South Korea.
Background: Patients with estrogen receptor (ER)-positive breast cancer (BC) can be treated with endocrine therapy targeting ER, however, metastatic recurrence occurs in 25% of the patients who have initially been treated. Secreted proteins from tumors play important roles in cancer metastasis but previous methods for isolating secretory proteins had limitations in identifying novel targets.
Methods: We applied an in situ secretory protein labeling technique using TurboID to analyze secretome from tamoxifen-resistant (TAMR) BC.
Cell Commun Signal
January 2025
School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
Endothelial-mesenchymal transition (EndMT) is defined as an important process of cellular differentiation by which endothelial cells (ECs) are prone to lose their characteristics and transform into mesenchymal cells. During EndMT, reduced expression of endothelial adhesion molecules disrupts intercellular adhesion, triggering cytoskeletal reorganization and mesenchymal transition. Numerous studies have proved that EndMT is a multifaceted biological event driven primarily by cytokines such as TGF-β, TNF-α, and IL-1β, alongside signaling pathways like WNT, Smad, MEK-ERK, and Notch.
View Article and Find Full Text PDFBMC Genomics
January 2025
State Key Laboratory of Biocontrol, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Guangdong Provincial Key Laboratory of Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.
Infectious spleen and kidney necrosis virus (ISKNV) is a highly virulent and rapidly transmissible fish virus that poses threats to the aquaculture of a wide variety of freshwater and marine fish. N6-methyladenosine (mA), recognized as a common epigenetic modification of RNA, plays an important regulatory role during viral infection. However, the impact of mA RNA methylation on the pathogenicity of ISKNV remains unexplored.
View Article and Find Full Text PDFJ Cell Mol Med
January 2025
Zhengzhou Key Laboratory of Cardiovascular Aging, Henan Province Key Laboratory for Prevention and Treatment of Coronary Heart Disease, National Health Commission key Laboratory of Cardiovascular Regenerative Medicine, Central China Fuwai Hospital of Zhengzhou University, Fuwai Central China Cardiovascular Hospital & Central China Branch of National Center for Cardiovascular Diseases, Zhengzhou, Henan, China.
N6-adenosine methylation (m6A) of RNA is involved in the regulation of various diseases. However, its role in chemotherapy-related vascular endothelial injury has not yet been elucidated. We found that methyltransferase-like 3 (METTL3) expression was significantly reduced during doxorubicin (DOX)-induced apoptosis of vascular endothelial cells both in vivo and in vitro, and that silencing of METTL3 further intensified this process.
View Article and Find Full Text PDFCommun Biol
January 2025
Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, 02111, USA.
Activation of anaplerosis takes away glutamine from the biosynthetic pathways to the energy-producing TCA cycle. Especially, induction of hyperoxia driven anaplerosis in neurovascular tissues such as the retina during early stages of development could deplete biosynthetic precursors from newly proliferating endothelial cells impeding physiological angiogenesis and leading to vasoobliteration. Using an oxygen-induced retinopathy (OIR) mouse model, we investigated the metabolic differences between OIR-resistant BALB/cByJ and OIR susceptible C57BL/6J strains at system levels to understand the molecular underpinnings that potentially contribute to hyperoxia-induced vascular abnormalities in the neural retina.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!