Counts of immature stages of the mosquito Aedes aegypti have been used to calculate several entomological indices of dengue vector abundance. Some studies have concluded that these indices can be used as indicators of dengue epidemic risk, while other studies have failed to find a predictive relationship. Ecological niche models have been able to predict distributional patterns in space and time, not only of vectors, but also of the diseases that they transmit. In this study, we used Landsat 7 ETM+ images and two niche-modeling algorithms to estimate the local-landscape ecological niche and the dynamics of Ae. aegypti larval habitats in Bello, Colombia, and to evaluate their potential spatial and temporal distribution. Our models showed low omission error with high confidence levels: about 13.4% of the area presents conditions consistently suitable for breeding across the entire study period (2002-2008). The proportion of neighborhoods predicted to be suitable showed a positive association with dengue case rates, whereas the vector-focused Bretau index had no relationship to case rates. As a consequence, niche models appear to offer a superior option for predictive evaluation of dengue transmission risk and anticipating the potential for outbreaks.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1948-7134.2012.00198.x | DOI Listing |
Environ Monit Assess
January 2025
Faculty of Resources Management, Thai Nguyen University of Agriculture and Forestry, Mo Bach Str, Thai Nguyen City, Thai Nguyen Province, 250000, Vietnam.
Drought is a reoccurring natural phenomenon that presents significant challenges to agricultural production, ecosystem stability, and water resource management. The Central Highlands of Vietnam, a major region of industrial crops and vegetation ecosystems, has become increasingly vulnerable to drought impacts. Despite this vulnerability, limited research has explored the specific characteristics of drought and its seasonal effects on vegetation ecosystems in the region.
View Article and Find Full Text PDFNano Lett
January 2025
Disruptive & Sustainable Technologies for Agricultural Precision IRG, Singapore-MIT Alliance of Research and Technology, 1 CREATE Way, #03-06, Singapore 138602, Singapore.
Fluorescent nanosensors operating have shown recent success toward informing basic plant biology and agricultural applications. We developed near-infrared (NIR) fluorescent nanosensors using the Corona Phase Molecular Recognition (CoPhMoRe) technique that distinguish Fe(II) and Fe(III) species with limit of detection as low as 10 nM. An anionic poly(p-phenyleneethynylene) (PPE) polyelectrolyte wrapped single-walled carbon nanotube (SWNT) shows up to 200% turn-on and 85% turn-off responses to Fe(II) and Fe(III), respectively, allowing spatial and temporal analysis of iron uptake in both foliar and root-to-shoot pathways.
View Article and Find Full Text PDFAcc Chem Res
January 2025
School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
ConspectusSymmetry is a pervasive phenomenon spanning diverse fields, from art and architecture to mathematics and science. In the scientific realms, symmetry reveals fundamental laws, while symmetry breaking─the collapse of certain symmetry─is the underlying cause of phenomena. Research on symmetry and symmetry breaking consistently provides valuable insights across disciplines, from parity violation in physics to the origin of homochirality in biology.
View Article and Find Full Text PDFJ Bacteriol
January 2025
Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana, USA.
Not only do surface-growing microbes such as biofilms display specific traits compared to planktonic cells, but also they display many heterogeneous behaviors over many spatial and temporal contexts. While the application of molecular genetics tools to extract or visualize gene expression or regulatory function data is now common in studying surface growth, the use of analytical chemistry tools to visualize the spatiotemporal distribution of chemical products synthesized by these surface microbes is less common. Here, we review chemical imaging tools that have been used to inform our understanding of surface-growing microbes.
View Article and Find Full Text PDFGlob Chang Biol
January 2025
Scripps Institution of Oceanography, UC San Diego, La Jolla, California, USA.
High spatial or temporal variability in community composition makes it challenging for natural resource managers to predict ecosystem trajectories at scales relevant to management. This is commonly the case in nearshore marine environments, where the frequency and intensity of disturbance events vary at the sub-kilometer to meter scale, creating a patchwork of successional stages within a single ecosystem. The successional stage of a community impacts its stability, recovery potential, and trajectory over time in predictable ways.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!