In this study we examine two methods of enhancement of aggregation of hydrophobically modified chitosan in dilute aqueous solutions: by increasing the content of n-dodecyl substituents, favoring hydrophobic association, and by increasing the amount of added low molecular weight salt, screening the electrostatic repulsion between similarly charged aggregating chains. By static and dynamic light scattering it was demonstrated that at the growth of the content of hydrophobic groups in the polymer (2-4 mol %) and of the amount of salt in solution (0.025-0.1 M) the weight fraction of aggregates increases, but the aggregation number remains unchanged. This behavior was attributed to the core-shell structure of the aggregates, which provides a low surface energy and strong attraction of associating groups inside the core. At the same time, the effects of the content of hydrophobic groups in the polymer and the ionic strength of the solution on the radii of the aggregates are quite different. Increasing the content of hydrophobic groups induces growth of the gyration radii of the aggregates, but does not affect their hydrodynamic radii. These data suggest the expansion of the hydrophobic core of the aggregates and the contraction of their highly swollen shell. On the other hand, increasing the salt concentration leads to a decrease of both the gyration and hydrodynamic radii of the aggregates, which is due to partial screening of electrostatic repulsion between similarly charged units and lowering of the osmotic pressure of counterions confined inside the aggregates.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la3013409DOI Listing

Publication Analysis

Top Keywords

content hydrophobic
12
hydrophobic groups
12
radii aggregates
12
aggregates
8
hydrophobically modified
8
modified chitosan
8
light scattering
8
increasing content
8
screening electrostatic
8
electrostatic repulsion
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!