The strongly correlated thermoelectric properties have been a major hurdle for high-performance thermoelectric energy conversion. One possible approach to avoid such correlation is to suppress phonon transport by scattering at the surface of confined nanowire structures. However, phonon characteristic lengths are broad in crystalline solids, which makes nanowires insufficient to fully suppress heat transport. Here, we employed Si-Ge alloy as well as nanowire structures to maximize the depletion of heat-carrying phonons. This results in a thermal conductivity as low as ∼1.2 W/m-K at 450 K, showing a large thermoelectric figure-of-merit (ZT) of ∼0.46 compared with those of SiGe bulks and even ZT over 2 at 800 K theoretically. All thermoelectric properties were "simultaneously" measured from the same nanowires to facilitate accurate ZT measurements. The surface-boundary scattering is prominent when the nanowire diameter is over ∼100 nm, whereas alloying plays a more important role in suppressing phonon transport for smaller ones.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/nl300587u | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!