Can transcriptomics cut the gordian knot of amyotrophic lateral sclerosis?

Curr Genomics

INSERM, U692, Laboratoire de Signalisations Moléculaires et Neurodégénérescence, Strasbourg, France.

Published: November 2011

Amyotrophic lateral sclerosis (ALS) is an adult-onset degenerative disease characterized by the loss of upper and lower motor neurons, progressive muscle atrophy, paralysis and death, which occurs within 2-5 years of diagnosis. Most cases appear sporadically but some are familial, usually inherited in an autosomal dominant pattern. It is postulated that the disease results from the combination of multiple pathogenic mechanisms, which affect not only motor neurons but also non-neuronal neighboring cells. Together with the understanding of this intriguing cell biology, important challenges in the field concern the design of effective curative treatments and the discovery of molecular biomarkers for early diagnosis and accurate monitoring of disease progression. During the last decade, transcriptomics has represented a promising approach to address these questions. In this review, we revisit the major findings of the numerous studies that analyzed global gene expression in tissues and cells from biopsy or post-mortem specimens of ALS patients and related animal models. These studies corroborated the implication of previously described disease pathways, and investigated the role of new genes in the pathological process. In addition, they also identified gene expression changes that could be used as candidate biomarkers for the diagnosis and follow-up of ALS. The limitations of these transcriptomics approaches will be also discussed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3219845PMC
http://dx.doi.org/10.2174/138920211797904043DOI Listing

Publication Analysis

Top Keywords

amyotrophic lateral
8
motor neurons
8
gene expression
8
transcriptomics cut
4
cut gordian
4
gordian knot
4
knot amyotrophic
4
lateral sclerosis?
4
sclerosis? amyotrophic
4
lateral sclerosis
4

Similar Publications

Background: Immune dysregulation is commonly associated with neurodegenerative diseases (NDs), yet the underlying causes and mechanisms still require further investigation.

Objective: This study investigates the correlation between immune-related plasma proteins and the risk of NDs by integrating genome-wide association study (GWAS) data for Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and multiple sclerosis (MS) with plasma proteome analysis.

Methods: By analyzing GWAS data for 4907 immune-related plasma proteins, this research evaluates the direct impact of plasma proteins on the risk of four NDs: AD, PD, ALS, and MS.

View Article and Find Full Text PDF

The motor neuron disease amyotrophic lateral sclerosis (ALS) is a devastating condition with limited treatment options. The past few years have witnessed a ramping up of translational ALS research, offering the prospect of disease-modifying therapies. Although breakthroughs using gene-targeted approaches have shown potential to treat patients with specific disease-causing mutations, the applicability of such therapies remains restricted to a minority of individuals.

View Article and Find Full Text PDF

Neurodegenerative diseases (NDDs), mainly including Huntington's disease (HD), amyotrophic lateral sclerosis (ALS), and Alzheimer's disease (AD), are sporadic and rare genetic disorders of the central nervous system. A key feature of these conditions is the slow accumulation of misfolded protein deposits in brain neurons, the excessive aggregation of which leads to neurotoxicity and further disorders of the nervous system.

View Article and Find Full Text PDF

Genetically Engineered Mouse Models for Alzheimer Disease and Frontotemporal Dementia: New Insights from Single-Cell and Spatial Transcriptomics.

Am J Pathol

December 2024

Department of Physiology and Biophysics, Center for Neurodegeneration and Regeneration, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California; Neuromedicine PhD Program, Programs in Biomedical and Biological Sciences (PIBBS), Keck School of Medicine, University of Southern California, Los Angeles, California; Neuroscience Graduate Program, University of Southern California, Los Angeles, California. Electronic address:

Neurodegenerative diseases, including Alzheimer disease, frontotemporal dementia, Parkinson disease, Huntington disease, and amyotrophic lateral sclerosis, are often casually linked to protein aggregation and inclusion. As the origins of those proteinopathies have been biochemically traced and genetically mapped, genetically engineered animal models carrying the specific mutations or variants are widely used for investigating the etiology of these diseases, as well as for testing potential therapeutics. This article focuses on the mouse models of Alzheimer disease and closely related frontotemporal dementia, particularly the ones that have provided most valuable knowledge, or are in a trajectory of doing so.

View Article and Find Full Text PDF

Localized lipoatrophy is a rare condition characterized by the localized loss of subcutaneous adipose tissue. It may occur idiopathically without specific triggers. The pathogenesis of idiopathic localized lipoatrophy remains largely unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!