Antiangiogenic therapies are now well established in oncology clinical practice; however, despite initial optimism, the results of late-phase trials, especially in the adjuvant setting, have largely proved disappointing. In the context of metastatic disease, resistance to antiangiogenic agents arises through a range of mechanisms, including the development of alternative angiogenic pathways. One of the proposed strategies to overcome this resistance is to combine antiangiogenic agents with different mechanisms of action. Early-phase clinical trials assessing the tolerability and efficacy of different combinations of antiangiogenic drugs, including those that target the VEGF pathway or the angiopoietins, as well as vascular disrupting agents, are increasing in number. An example of this strategy is the combination of sorafenib and bevacizumab, which has elicited major responses in different tumor types, including ovarian carcinoma and glioblastoma. However, overlapping and cumulative toxicities pose a real challenge. This review summarizes the preclinical rationale for this approach and current clinical experience in combining antiangiogenic therapies.

Download full-text PDF

Source
http://dx.doi.org/10.1158/1078-0432.CCR-11-1275DOI Listing

Publication Analysis

Top Keywords

overcome resistance
8
clinical experience
8
antiangiogenic therapies
8
antiangiogenic agents
8
antiangiogenic
5
combining antiangiogenics
4
antiangiogenics overcome
4
resistance rationale
4
clinical
4
rationale clinical
4

Similar Publications

Ion channels, as functional molecules that regulate the flow of ions across cell membranes, have emerged as a promising target in cancer therapy due to their pivotal roles in cell proliferation, metastasis, apoptosis, drug resistance, and so on. Recently, increasing evidence suggests that dysregulation of ion channels is a common characteristic of cancer cells, contributing to their survival and the resistance to conventional therapies. For example, the aberrant expression of sodium (Na) and potassium ion (K) channels is significantly correlated with the sensitivity of chemotherapy drugs.

View Article and Find Full Text PDF

 is a gram-negative bacterium that causes a diversity of diseases in numerous plants. Strategies to inhibit growth include protective procedures; however, controlling the disease is complicated due to its rapid spread. Several antimicrobial agents can prevent this disease, such as chemical compounds, biological agents, secondary metabolites, nanoparticles, bacteriophages, and antimicrobial peptides (AMPs).

View Article and Find Full Text PDF

Folic Acid-Modified Milk Exosomes Delivering c-Kit siRNA Overcome EGFR-TKIs Resistance in Lung Cancer by Suppressing mTOR Signaling and Stemness.

Int J Biol Sci

January 2025

Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China, 610041.

The EGFR-TKIs (epidermal growth factor receptor-tyrosine kinases inhibitors) offer significant benefits to lung cancer patients with sensitive EGFR mutations; however, the development of acquired resistance poses a significant challenge and leads to poor prognosis. Thus, exploring novel therapeutic strategies to overcome EGFR-TKI resistance is urgently needed. This study introduces an innovative approach utilizing folic acid-modified milk exosomes loaded with c-kit siRNA (FA-mExo-siRNA-c-kit) to target EGFR-TKI resistance in lung cancer.

View Article and Find Full Text PDF

Hypoxia is a major obstacle in the treatment of solid tumors because it causes immune escape and therapeutic resistance. Drug penetration into the hypoxic regions of tumor microenvironment (TME) is extremely limited. This study proposes using the unidirectional fluid flow property of low-intensity pulsed ultrasound (LIPUS) to overcome drug penetration limitations in the TME.

View Article and Find Full Text PDF

Osteosarcoma (OS) is the most common bone malignancy. c-MET is recognized as a therapeutic target. However, traditional c-MET inhibitors show compromised efficacy due to the acquired resistance and side effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!