Purpose: Aberrant Notch signaling has been implicated in the pathogenesis of many human cancers. MK-0752 is a potent, oral inhibitor of γ-secretase, an enzyme required for Notch pathway activation. Safety, maximum-tolerated dose, pharmacokinetics (PKs), pharmacodynamics, and preliminary antitumor efficacy were assessed in a phase I study of MK-0752.

Patients And Methods: MK-0752 was administered in three different schedules to patients with advanced solid tumors. Hair follicles were collected at higher dose levels to assess a gene signature of Notch inhibition.

Results: Of 103 patients who received MK-0752, 21 patients received a continuous once-daily dosing at 450 and 600 mg; 17 were dosed on an intermittent schedule of 3 of 7 days at 450 and 600 mg; and 65 were dosed once per week at 600, 900, 1,200, 1,500, 1,800, 2,400, 3,200, and 4,200 mg. The most common drug-related toxicities were diarrhea, nausea, vomiting, and fatigue. PKs (area under the concentration-time curve and maximum measured plasma concentration) increased in a less than dose proportional manner, with a half-life of approximately 15 hours. Significant inhibition of Notch signaling was observed with the 1,800- to 4,200-mg weekly dose levels, confirming target engagement at those doses. One objective complete response and an additional 10 patients with stable disease longer than 4 months were observed among patients with high-grade gliomas.

Conclusion: MK-0752 toxicity was schedule dependent. Weekly dosing was generally well tolerated and resulted in strong modulation of a Notch gene signature. Clinical benefit was observed, and rational combination trials are currently ongoing to maximize clinical benefit with this novel agent.

Download full-text PDF

Source
http://dx.doi.org/10.1200/JCO.2011.39.1540DOI Listing

Publication Analysis

Top Keywords

patients advanced
8
advanced solid
8
solid tumors
8
notch signaling
8
dose levels
8
gene signature
8
patients received
8
450 600
8
600 dosed
8
clinical benefit
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!