Diagnosis of fetal isolated mild ventriculomegaly (IMVM) is the most common brain abnormality on prenatal ultrasound. We have set to identify potential alterations in brain development specific to IMVM in tissue volume and cortical and ventricular local surface curvature derived from in utero magnetic resonance imaging (MRI). Multislice 2D T2-weighted MRI were acquired from 32 fetuses (16 IMVM, 16 controls) between 22 and 25.5 gestational weeks. The images were motion-corrected and reconstructed into 3D volumes for volumetric and curvature analyses. The brain images were automatically segmented into cortical plate, cerebral mantle, deep gray nuclei, and ventricles. Volumes were compared between IMVM and control subjects. Surfaces were extracted from the segmentations for local mean surface curvature measurement on the inner cortical plate and the ventricles. Linear models were estimated for age-related and ventricular volume-associated changes in local curvature in both the inner cortical plate and ventricles. While ventricular volume was enlarged in IMVM, all other tissue volumes were not different from the control group. Ventricles increased in curvature with age along the atrium and anterior body. Increasing ventricular volume was associated with reduced curvature over most of the ventricular surface. The cortical plate changed in curvature with age at multiple sites of primary sulcal formation. Reduced cortical folding was detected near the parieto-occipital sulcus in IMVM subjects. While tissue volume appears to be preserved in brains with IMVM, cortical folding may be affected in regions where ventricles are dilated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00429-012-0418-1 | DOI Listing |
Inferior frontal sulcal hyperintensities (IFSH) observed on fluid-attenuated inversion recovery (FLAIR) MRI have been proposed as indicators of elevated cerebrospinal fluid waste accumulation in cerebral small vessel disease (CSVD). However, to validate IFSH as a reliable imaging biomarker, further replication studies are required. The objective of this study was to investigate associations between IFSH and CSVD, and their potential repercussions, i.
View Article and Find Full Text PDFProg Neurobiol
January 2025
Institute of Biomedical Investigations August Pi i Sunyer (IDIBAPS), Systems Neuroscience, 08036 Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain. Electronic address:
Elucidating human cerebral cortex function is essential for understanding the physiological basis of both healthy and pathological brain states. We obtained extracellular local field potential recordings from cortical slices of neocortical tissue from refractory epilepsy patients. Multi-electrode recordings were combined with histological information, providing a two-dimensional spatiotemporal characterization of human cortical dynamics in control conditions and following modulation of the excitation/inhibition balance.
View Article and Find Full Text PDFNeuron
January 2025
Neuropsychology and Cognitive Neuroscience Unit, Department of Psychology, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland. Electronic address:
Prefrontal cortex and medial temporal lobe information processing might not be that different after all. In this issue of Neuron, Whittington et al. show that prefrontal cortex working memory slot activity enables sequence memorizing similar to hippocampal long-term memory.
View Article and Find Full Text PDFNeuron
January 2025
Department of Biology, Washington University in Saint Louis, St. Louis, MO, USA. Electronic address:
In this issue of Neuron, Ruggiero et al. demonstrate that hippocampal networks maintain a stable mean firing rate despite unstable individual units. This homeostatic control operates through NMDAR-eEF2K-BDNF signaling in parvalbumin interneurons.
View Article and Find Full Text PDFScience
January 2025
Laboratory of Cerebral Cortex Research, HUN-REN Institute of Experimental Medicine, Budapest, Hungary.
Rewards are essential for motivation, decision-making, memory, and mental health. We identified the subventricular tegmental nucleus (SVTg) as a brainstem reward center. In mice, reward and its prediction activate the SVTg, and SVTg stimulation leads to place preference, reduced anxiety, and accumbal dopamine release.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!