Measuring the impact of biotic factors on populations of immature emerald ash borers (Coleoptera: Buprestidae).

Environ Entomol

USDA-ARS, Beneficial Insects Introduction Research Unit, Newark, DE 19713, USA.

Published: October 2010

Cohorts of emerald ash borer larvae, Agrilus planipennis Fairmaire, were experimentally established in July of 2008 on healthy green ash (Fraxinus pennsylvanica) trees in two wooded plots at each of three sites near Lansing, MI, by caging gravid emerald ash borer females or placing laboratory-reared eggs on trunks (0.5-2 m above the ground) of selected trees. One plot at each site was randomly chosen for release of two introduced larval parasitoids, Tetrastichus planipennisi Yang (Hymenoptera: Eulophidae) and Spathius agrili Yang (Hymenoptera: Braconidae), whereas the other served as the control. Stage-specific mortality factors and rates were measured for all experimentally established cohorts and for associated wild (i.e., naturally occurring) emerald ash borer immature stages via destructive sampling of 2.5 m (above the ground) trunk sections of cohort-bearing trees in the spring and fall of 2009. Host tree defense was the most important mortality factor, causing 32.0 to 41.1% mortality in the experimental cohorts and 17.5 to 21.5% in wild emerald ash borer stages by spring 2009, and 16.1 to 29% for the remaining experimental cohorts, and 9.9 to 11.8% for wild immature emerald ash borer stages by fall 2009. Woodpecker predation was the second most important factor, inflicting no mortality in the experimental cohorts but causing 5.0 to 5.6% mortality to associated wild emerald ash borer stages by spring 2009 and 9.2 to 12.8% and 3.2 to 17.7%, respectively, for experimental cohorts and wild emerald ash borer stages by fall 2009. Mortality from disease in both the experimental and wild cohorts was low (<3%) in both the spring and fall sample periods. In the fall 2009 samples, ≈ 1.5% of experimental cohorts and 0.8% of the wild emerald ash borer stages were parasitized by T. planipennisi. While there were no significant differences in mortality rates because of parasitism between parasitoid-release and control plots, T. planipennisi was detected in each of the three release sites by the end of the study but was not detected in the experimental cohorts or associated wild larvae in any of the three control plots.

Download full-text PDF

Source
http://dx.doi.org/10.1603/EN10023DOI Listing

Publication Analysis

Top Keywords

emerald ash
32
ash borer
28
experimental cohorts
16
borer stages
16
fall 2009
12
wild emerald
12
ash
9
emerald
8
immature emerald
8
experimentally established
8

Similar Publications

Article Synopsis
  • Understanding the evolution of genomic variation is essential for creating effective conservation strategies for threatened species, focusing on connectivity, demographic changes, and environmental adaptation.
  • The study analyzed genomic variation in Fraxinus latifolia, a riparian tree facing threats from the invasive emerald ash borer, by sequencing over 1000 individuals from 61 populations.
  • Results showed strong population structure and low genetic diversity, suggesting that this patchy distribution could hinder the species' long-term evolutionary potential, underscoring the importance of conserving genomic diversity for future restoration efforts.
View Article and Find Full Text PDF

Multiyear genotype characterization of eastern spruce budworm outbreaking populations from Quebec and adjacent regions.

Ecology

December 2024

Institute of Forestry and Conservation, John H. Daniels Faculty of Architecture, Landscape and Design (Forestry), University of Toronto, Toronto, Ontario, Canada.

Population outbreaks are characterized by irruptive changes in population density and connectivity resulting in rapid demographic and spatial expansion, often at the landscape scale. Outbreaks are common across multiple taxa, many of which inhabit northern ecosystems. Outbreaks of Lepidopteran defoliators in forest ecosystems are a particularly compelling example of this phenomenon, given the massive spatial scales over which these outbreaks can occur, their frequency, and socioeconomic impacts.

View Article and Find Full Text PDF
Article Synopsis
  • The emerald ash borer (EAB) is a serious global pest, and accurately detecting it is essential for effective management, but traditional methods are often insufficient for large-scale monitoring.!* -
  • Research reveals that differences in Leaf Area Index (LAI) and leaf sizes due to EAB infestation become significant in July, with detection accuracy rising from 88.57% before July to 100% after.!* -
  • The optimal time for monitoring EAB is highlighted, suggesting field surveys should occur from May to November and remote sensing from August to October, improving detection and management strategies.!*
View Article and Find Full Text PDF
Article Synopsis
  • Forest ecosystems face threats from wood-boring pests like the Emerald ash borer (EAB), making early detection crucial for preventing damage, but traditional manual monitoring is ineffective in the early stages of infestation.
  • The newly developed VibroEABNet is a deep learning model that detects EAB boring vibrations with impressive accuracy—98.98% in test datasets and 97.5% in real forest conditions—while outperforming existing methods.
  • This model addresses noise interference with a built-in denoising feature and has a quick inference time of 26 ms, making it practical for use in areas with limited resources; future research aims to adapt this technology for other wood-boring pests.
View Article and Find Full Text PDF

Oobius agrili Zhang and Huang (Hymenoptera: Encyrtidae) is an important egg parasitoid of the emerald ash borer (EAB), Agrilus planipennis Fairmaire (Coleoptera: Buprestidae). Methods for laboratory-rearing O. agrili have been developed but its mass-production depends on the continuous production and storage of freshly laid EAB eggs as well as diapaused parasitoid progeny (inside parasitized EAB eggs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!