AI Article Synopsis

  • HER2-overexpressing cancer cells show resistance to common chemotherapy drugs, cisplatin (CDDP) and doxorubicin (DXR).
  • The SV40 T/t-common polypeptide can make these resistant cancer cells more sensitive to CDDP and DXR, leading to increased cell death (apoptosis).
  • T/t-common works by inhibiting proteins Bcl-2 and Bcl-XL, and reducing ERK activity, suggesting that combining T/t-common with these chemotherapies could improve treatment outcomes for HER2-overexpressing cancers, as demonstrated in mouse models.

Article Abstract

HER2-overexpressing cancer cells are resistant to cisplatin (CDDP) and doxorubicin (DXR). Here we report that SV40 T/t-common polypeptide could specifically sensitize HER2-overexpressing cancer cells to CDDP and DXR and specifically enhance CDDP- or DXR-induced apoptosis in these cells. This activity of T/t-common may be attributed to its ability to inhibit Bcl-2 and Bcl-XL and to suppress ERK activity in CDDP- or DXR-treated HER2-overexpressing cancer cells. T/t-common could enhance the antitumor activity of DXR on HER2-overexpressing ovarian tumor in NOD/SCID mice, suggesting that combination therapy using T/t-common and chemotherapeutic agents may provide a new approach for treating HER2-overexpressing cancers.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.canlet.2012.04.019DOI Listing

Publication Analysis

Top Keywords

cancer cells
16
her2-overexpressing cancer
12
sv40 t/t-common
8
t/t-common polypeptide
8
her2-overexpressing
6
cells
5
polypeptide enhances
4
enhances sensitivity
4
sensitivity her2-overexpressing
4
her2-overexpressing human
4

Similar Publications

Periostin-mediated NOTCH1 activation between tumor cells and HSCs crosstalk promotes liver metastasis of small cell lung cancer.

J Exp Clin Cancer Res

January 2025

National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China.

Background: Metastasis is the primary cause of mortality in small cell lung cancer (SCLC), with the liver being a predominant site for distal metastasis. Despite this clinical significance, mechanisms underlying the interaction between SCLC and liver microenvironment, fostering metastasis, remain unclear.

Methods: SCLC patient tissue array, bioinformatics analysis were performed to demonstrate the role of periostin (POSTN) in SCLC progression, metastasis, and prognosis.

View Article and Find Full Text PDF

Exosomal circ_0006896 promotes AML progression via interaction with HDAC1 and restriction of antitumor immunity.

Mol Cancer

January 2025

Department of Hematology, Qilu Hospital of Shandong University, No.117, West of Wenhua Road, Jinan, Shandong, 250012, People's Republic of China.

Background: Drug resistance and immune escape continue to contribute to poor prognosis in AML. Increasing evidence suggests that exosomes play a crucial role in AML immune microenvironment.

Methods: Sanger sequencing, RNase R and fluorescence in situ hybridization were performed to confirm the existence of circ_0006896.

View Article and Find Full Text PDF

NLRP3 inflammasome-modulated angiogenic function of EPC via PI3K/ Akt/mTOR pathway in diabetic myocardial infarction.

Cardiovasc Diabetol

January 2025

Department of Clinical Pharmacy, School of Preclinical Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tong jia Lane, Nanjing, 210009, People's Republic of China.

Background: Inflammatory diseases impair the reparative properties of endothelial progenitor cells (EPC); however, the involvement of diabetes in EPC dysfunction associated with myocardial infarction (MI) remains unknown.

Methods: A model was established combining high-fat diet (HFD)/streptozotocin (STZ)-induced diabetic mice with myocardial infarction. The therapeutic effects of transplanted wild-type EPC, Nlrp3 knockout EPC, and Nlrp3 overexpression EPC were evaluated.

View Article and Find Full Text PDF

Tribbles homolog 2 (TRIB2), a pseudoserine/threonine kinase, is a member of the TRIB family. TRIB2 primarily regulates cell proliferation through its scaffold or adaptor effect on promoting the degradation of target proteins by E3 ligase-dependent ubiquitination and regulating mitogen-activated protein kinase (MAPK) and protein kinase B (AKT) signaling pathways. TRIB2 is not only involved in the physiological proliferation of cells (granulosa cells, myoblasts, naive T cells, and thymocytes) during normal development but also in the pathological proliferation of vascular smooth muscle cells and a variety of cancer cells (lung cancer cells, liver cancer cells, leukemia cells, pancreatic cancer cells, gastric cancer cells, prostate cancer cells, thyroid cancer cells, cervical cancer cells, melanoma cells, colorectal cancer cells, ovarian cancer cells and osteosarcoma cells) under disease conditions.

View Article and Find Full Text PDF

Several members of the NIMA-related kinase (NEK) family have been implicated in tumor progression; however, the role and underlying mechanisms of NEK8 in gastric cancer (GC) remain unclear. This study revealed a significant upregulation of NEK8 in GC, identifying it as an independent prognostic marker in patients with GC. Consistent with these findings, NEK8 silencing substantially impeded GC aggressiveness both in vitro and in vivo, while its overexpression produced the opposite effect.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!