Small angle X-ray diffraction (SAXD), resonance Raman (RR) spectroscopy with 413 nm excitation, and non-resonance Raman technique with 785 nm excitation were used to probe the influence of entrapped cytochrome c (Cyt c) on the structure of hydrated phytantriol (Phyt) liquid-crystalline phases as well as conformational changes of heme group and secondary structure of the protein. SAXD measurements indicated that incorporation of Cyt c affects both nanostructure dimensions and type of liquid-crystalline phases of hydrated Phyt. The unit cell dimensions decrease with increasing Cyt c concentration for all phases. In addition, protein perturbs the nanostructure of Q(230) and Q(224) liquid-crystalline phases of hydrated Phyt to such an extent that they transform into the Q(229) phase with the Im3m space group. RR data revealed that entrapment of oxidized Cyt c into the Q(230) phase at 1 wt.% content results in near complete reduction of central iron ion of the heme group, while its low-spin state and six-ligand coordination configuration are preserved. Based on the analysis of heme out-of-plane folding vibration near 568 cm(-1) (γ(21)) and ν(48) mode at 633 cm(-1), it was demonstrated that the protein matrix tension on the heme group is relaxed upon incorporation of protein into Q(230) phase. Non-resonant Raman bands of difference spectra showed the preservation of α-helix secondary structure of Cyt c in the liquid-crystalline phase at relatively high (5 wt.%) content. The Cyt c induced spectroscopic changes of Phyt bands were found to be similar as decrease in temperature.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2012.04.002DOI Listing

Publication Analysis

Top Keywords

liquid-crystalline phases
16
heme group
12
x-ray diffraction
8
secondary structure
8
phases hydrated
8
hydrated phyt
8
q230 phase
8
wt% content
8
cyt
6
liquid-crystalline
5

Similar Publications

Efficient circularly polarized luminescence (CPL) optical waveguides have significant potential for advancing photonic and optoelectronic devices. However, the development of CPL optical waveguides materials (OWMs) with low optical loss coefficient remains a considerable challenge. To overcome this, we design and synthesize CPL OWMs based on room-temperature phosphorescent liquid crystalline polymers (LCPs).

View Article and Find Full Text PDF

The recent discovery of ferroelectric nematic liquid crystalline phases marks a major breakthrough in soft matter research. An intermediate phase, often observed between the nonpolar and the ferroelectric nematic phase, shows a distinct antiferroelectric response to electric fields. However, its structure and formation mechanisms remain debated, with flexoelectric and electrostatics effects proposed as competing mechanisms.

View Article and Find Full Text PDF

How condensed-matter simulations depend on the number of molecules being simulated (N) is sometimes itself a valuable piece of information. Liquid crystals provide a case in point. Light scattering and 2d-IR experiments on isotropic-phase samples display increasingly large orientational fluctuations ("pseudo-nematic domains") as the samples approach their nematic phase.

View Article and Find Full Text PDF

This paper presents the reversible transformation between two polymorphs of a hexacatenar liquid crystal () with distinct fluorescence colors at room temperature (RT). This method utilizes mechanical pressure (mechanochromism) and an electric field (E-field-chromism). The molecule (), designed with a pyrene core and 1,2,3-triazole linkers, exhibits a blue-emissive crystalline (CRY) polymorph () and a green-emissive liquid crystalline (LC) polymorph () at RT, depending on the cooling rate from the liquid phase.

View Article and Find Full Text PDF

The translation of cell-derived extracellular vesicles (EVs) into biogenic gene delivery systems is limited by relatively inefficient loading strategies. In this work, the loading of various nucleic acids into small EVs via their spontaneous hybridization with preloaded non-lamellar liquid crystalline lipid nanoparticles (LCNPs), forming hybrid EVs (HEVs) is described. It is demonstrated that LCNPs undergo pH-dependent structural transitions from inverse hexagonal (H) phases at pH 5 to more disordered non-lamellar phases, possibly inverse micellar (L) or sponge (L) phases, at pH 7.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!