Background: Asymmetric NG,NG-dimethylarginine (ADMA), an endogenous inhibitor of nitric oxide synthase, is regulated by the enzymatic participants of synthetic and metabolic processes, i.e., type I protein N-arginine methyltransferase (PRMT) and dimethylarginine dimethylaminohydrolase (DDAH). Previous reports have demonstrated that circulating ADMA levels can vary in patients with type 1 and type 2 diabetes mellitus (T2DM). White adipose tissue expresses the full enzymatic machinery necessary for ADMA production and metabolism; however, modulation of the activities of adipose ADMA-related enzymes in T2DM remains to be determined.
Methods: A rodent model of T2DM using 11- and 20-week old Goto-Kakizaki (GK) rats was used. The expression and catalytic activity of PRMT1 and DDAH1 and 2 in the white adipose tissues (periepididymal, visceral and subcutaneous fats) and femur skeletal muscle tissue were determined by immunoblotting, in vitro methyltransferase and in vitro citrulline assays.
Results: Non-obese diabetic GK rats showed low expression and activity of adipose PRMT1 compared to age-matched Wistar controls. Adipose tissues from the periepididymal, visceral and subcutaneous fats of GK rats had high DDAH1 expression and total DDAH activity, whereas the DDAH2 expression was lowered below the control value. This dynamic of ADMA-related enzymes in white adipose tissues was distinct from that of skeletal muscle tissue. GK rats had lower levels of serum non-esterified fatty acids (NEFA) and triglycerides (TG) than the control rats. In all subjects the adipose PRMT1 and DDAH activities were statistically correlated with the levels of serum NEFA and TG.
Conclusion: Activities of PRMT1 and DDAH in white adipose tissues were altered in diabetic GK rats in an organ-specific manner, which was reflected in the serum levels of NEFA and TG. Changes in adipose ADMA-related enzymes might play a part in the function of white adipose tissue.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3472189 | PMC |
http://dx.doi.org/10.1186/1758-5996-4-17 | DOI Listing |
Phytomedicine
January 2025
The Second Hospital of Shandong University, Jinan, Shandong, PR China; Advanced Medical Research Institute, Shandong University, Shandong University, Jinan, Shandong, PR China. Electronic address:
Background: The prevalence of obesity and its associated diseases has sharply increased, becoming a global health issue. White adipose tissue (WAT), responsible for lipid storage via hyperplasia and hypertrophy, and brown adipose tissue (BAT), which facilitates energy dissipation, have increasingly been recognized as critical regulators of weight loss. Shouhui Tongbian Capsule (SHTB) has traditionally been used for detoxification, weight loss, and lipid reduction, and clinical evidence supports its use for relieving constipation.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2025
Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, 730000, China; The First Clinical Medical College, Lanzhou University, Lanzhou, 730000, China. Electronic address:
Stimulator of interferon response cGAMP interactor 1 (STING1), as an innate immune adaptor protein that mediates DNA sensing, has attracted tremendous biomedical interest. However, several recent researches have revealed the key role of STING1 in regulating the metabolic pathway. Here, we investigated its role in adipocyte differentiation.
View Article and Find Full Text PDFJ Vet Med Sci
January 2025
Department of Bioresource Sciences, Faculty of Agriculture, Kyushu University.
Ovariectomized (OVX) mice serve as a key model for studying postmenopausal metabolic changes, particularly obesity, as they mimic the hormonal state of postmenopausal women. However, our understanding remains limited regarding how hormonal and dietary factors affect different adipose tissues. Furthermore, precise documentation of experimental procedures and their effects on specific adipose tissue depots is essential for reproducible translational research.
View Article and Find Full Text PDFInt J Obes (Lond)
January 2025
Department of Internal Medicine, Section on Molecular Medicine, Wake Forest University School of Medicine, Winston Salem, NC, 27101, USA.
Previous studies have identified G protein-coupled receptor (GPCR) kinase 5 (GRK5) as a genetic factor contributing to obesity pathogenesis, but the underlying mechanism remains unclear. We demonstrate here that Grk5 mRNA is more abundant in stromal vascular fractions of mouse white adipose tissue, the fraction that contains adipose progenitor cells, or committed preadipocytes, than in adipocyte fractions. Thus, we generated a GRK5 knockout (KO) 3T3-L1 preadipocyte to further investigate the mechanistic role of GRK5 in regulating adipocyte differentiation.
View Article and Find Full Text PDFMicrobiome
January 2025
Department of Experimental Vascular Medicine, Amsterdam UMC, Amsterdam, the Netherlands.
Background: The human gut microbiome strongly influences host metabolism by fermenting dietary components into metabolites that signal to the host. Our previous work has shown that Intestinimonas butyriciproducens is a prevalent commensal bacterium with the unique ability to convert dietary fructoselysine to butyrate, a well-known signaling molecule with proven health benefits. Dietary fructoselysine is an abundant Amadori product formed in foods during thermal treatment and is part of foods rich in dietary advanced glycation end products which have been associated with cardiometabolic disease.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!