Trace amine-associated receptors (TAARs) are vertebrate olfactory receptors. However, ligand recognition properties of TAARs remain poorly understood, as most are "orphan receptors" without known agonists. Here, we identify the first ligands for many rodent TAARs and classify these receptors into two subfamilies based on the phylogeny and binding preference for primary or tertiary amines. Some mouse and rat orthologs have similar response profiles, although independent Taar7 gene expansions led to highly related receptors with altered ligand specificities. Using chimeric TAAR7 receptors, we identified an odor contact site in transmembrane helix III that functions as a selectivity filter. Homology models based on the β(2) adrenergic receptor structure indicate spatial proximity of this site to the ligand. Gain-of-function mutations at this site created olfactory receptors with radically altered odor recognition properties. These studies provide new TAAR ligands, valuable tools for studying receptor function, and general insights into the molecular pharmacology of G protein-coupled receptors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3401279 | PMC |
http://dx.doi.org/10.1021/cb300111e | DOI Listing |
Curr Neuropharmacol
January 2025
Department of Stem Cell Bioengineering, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawinskiego 5 Str, 02-106 Warsaw, Poland.
The purpose of this review was to analyse the literature regarding the correlation between the level of tryptamine, aryl hydrocarbon receptor (AHR) signalling pathway activation, and monoamine oxidase (MAO)-A and MAO-B activity in health and conditions such as neurodegenerative, neurodevelopmental, and psychiatric disorders. Tryptamine is generated through the decarboxylation of tryptophan by aromatic amino acid decarboxylase (AADC) in the central nervous system (CNS), peripheral nervous system (PNS), endocrine system, and gut bacteria. Organ-specific metabolism of tryptamine, which is mediated by different MAO isoforms, causes this trace amine to have different pharmacokinetics between the brain and periphery.
View Article and Find Full Text PDFFront Psychiatry
December 2024
Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia.
Introduction: Aggression and self-harm disproportionately occur in youths preoccupied with social status tracking. These pathological conditions are linked to a serotonin (5-HT) deficit in the brain. Ablation of 5-HT biosynthesis by tryptophan hydroxylase 2 knockout (TPH2-KO) increases aggression in rodents.
View Article and Find Full Text PDFNeuropsychiatr Dis Treat
December 2024
Department of Medicine and Surgery, Kore University of Enna, Enna (EN), Italy.
Naunyn Schmiedebergs Arch Pharmacol
December 2024
Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India.
Br J Psychiatry
December 2024
Population Health Sciences, Bristol Medical School, University of Bristol, UK.
Background: Trace amine-associated receptor 1 (TAAR1) agonists offer a new approach, but there is uncertainty regarding their effects, exact mechanism of action and potential role in treating psychosis.
Aims: To evaluate the available evidence on TAAR1 agonists in psychosis, using triangulation of the output of living systematic reviews (LSRs) of animal and human studies, and provide recommendations for future research prioritisation.
Method: This study is part of GALENOS (Global Alliance for Living Evidence on aNxiety, depressiOn and pSychosis).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!