Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Particle-based magnetic resonance imaging (MRI) contrast agents have been the focus of recent studies, primarily due to the possibility of preparing multimodal particles capable of simultaneously targeting, imaging, and treating specific biological tissues in vivo. In addition, particle-based MRI contrast agents often have greater sensitivity than commercially available, soluble agents due to decreased molecular tumbling rates following surface immobilization, leading to increased relaxivities. Mesoporous silica particles are particularly attractive substrates due to their large internal surface areas. In this study, we immobilized a unique phosphonate-containing ligand onto mesoporous silica particles with a range of pore diameters, pore volumes, and surface areas, and Gd(III) ions were then chelated to the particles. Per-Gd(III) ionic relaxivities ranged from ∼2 to 10 mM(-1) s(-1) (37 °C, 60 MHz), compared to 3.0-3.5 mM(-1) s(-1) for commercial agents. The large surface areas allowed many Gd(III) ions to be chelated, leading to per-particle relaxivities of 3.3 × 10(7) mM(-1) s(-1), which is the largest value measured for a biologically suitable particle.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3403734 | PMC |
http://dx.doi.org/10.1021/ja302183w | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!