Communication and navigation in real environments rely heavily on the ability to distinguish objects in acoustic space. However, auditory spatial information is often corrupted by conflicting cues and noise such as acoustic reflections. Fortunately the brain can apply mechanisms at multiple levels to emphasize target information and mitigate such interference. In a rapid phenomenon known as the precedence effect, reflections are perceptually fused with the veridical primary sound. The brain can also use spatial attention to highlight a target sound at the expense of distracters. Although attention has been shown to modulate many auditory perceptual phenomena, rarely does it alter how acoustic energy is first parsed into objects, as with the precedence effect. This brief report suggests that both endogenous (voluntary) and exogenous (stimulus-driven) spatial attention have a profound influence on the precedence effect depending on where they are oriented. Moreover, we observed that both types of attention could enhance perceptual fusion while only exogenous attention could hinder it. These results demonstrate that attention, by altering how auditory objects are formed, guides the basic perceptual organization of our acoustic environment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3437381 | PMC |
http://dx.doi.org/10.1037/a0028348 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!