Exploring marine cyanobacteria for lead compounds of pharmaceutical importance.

ScientificWorldJournal

Department of Bioinformatics and Biotechnology, International Islamic University Islamabad, Sector H-10, 44000 Islamabad, Pakistan.

Published: July 2012

The Ocean, which is called the "mother of origin of life," is also the source of structurally unique natural products that are mainly accumulated in living organisms. Cyanobacteria are photosynthetic prokaryotes used as food by humans. They are excellent source of vitamins and proteins vital for life. Several of these compounds show pharmacological activities and are helpful for the invention and discovery of bioactive compounds, primarily for deadly diseases like cancer, acquired immunodeficiency syndrome (AIDS), arthritis, and so forth, while other compounds have been developed as analgesics or to treat inflammation, and so forth. They produce a large variety of bioactive compounds, including substances with anticancer and antiviral activity, UV protectants, specific inhibitors of enzymes, and potent hepatotoxins and neurotoxins. Many cyanobacteria produce compounds with potent biological activities. This paper aims to showcase the structural diversity of marine cyanobacterial secondary metabolites with a comprehensive coverage of alkaloids and other applications of cyanobacteria.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3324129PMC
http://dx.doi.org/10.1100/2012/179782DOI Listing

Publication Analysis

Top Keywords

bioactive compounds
8
compounds
6
exploring marine
4
cyanobacteria
4
marine cyanobacteria
4
cyanobacteria lead
4
lead compounds
4
compounds pharmaceutical
4
pharmaceutical ocean
4
ocean called
4

Similar Publications

Propolis, a natural product with remarkable therapeutic potential, has gained attention for its antimicrobial, antioxidant, and anti-inflammatory properties. In this study, propolis samples from Sarıyaprak, Kovanağzı, and Çemikari in Pervari, Siirt province, were analysed comprehensively. The evaluation included wax composition, DPPH and FRAP assays, total phenolic and flavonoid content, and pollen analysis.

View Article and Find Full Text PDF

Amidines are a vital class of bioactive compounds and often necessitate multiple components for their synthesis. Therefore, exploring efficient and sustainable methodologies for their synthesis is indispensable. Herein, we disclose an alternative and greener method for synthesizing an unexplored new class of amidines through the photochemical synergistic effect of copper/nitroxyl radical catalysis.

View Article and Find Full Text PDF

Electrochemical Cyclopropanation of Unactivated Alkenes with Methylene Compounds.

Angew Chem Int Ed Engl

January 2025

Nankai University, College of Chemistry, 94 Weijin Road, 300071, Tianjin, CHINA.

Cyclopropanes are prevalent in natural products, pharmaceuticals, and bioactive compounds, functioning as a significant structural motif. Although a series of methods have been developed for the construction of the cyclopropane skeleton, the development of a direct and efficient strategy for the rapid synthesis of cyclopropanes from bench-stable starting materials with a broad substrate scope and functional group tolerance remains challenging and highly desirable. Herein, we present an electrochemical method for the direct cyclopropanation of unactivated alkenes using active methylene compounds.

View Article and Find Full Text PDF

α-Glucosidase inhibitory activities of polyphenols from Mesua ferrea L. leaves.

Chem Biodivers

January 2025

Kunming Institute of Botany Chinese Academy of Sciences, Key laboratory of economic plants and biotechnology, 132# Lanhei Road, Heilongtan, Kunming, Yunnan, China, 650201, Kunming, CHINA.

Mesua ferrea L. is used in Ayurvedic and Thai medicine for treating various diseases, including diabetes. This study aimed to isolate and identify the bioactive constituents from M.

View Article and Find Full Text PDF

A series of new arecoline derivatives containing amino acid fragments were synthesized, and their fungicidal activities were investigated. All synthesized compounds were characterized by H NMR, CNMR, and HRMS. Preliminary bioactivity assays demonstrated that Compounds 3k, 3n, 3p, 3q, 3r, and 3s exhibited significant antifungal activity against Botryosphaeria cactivora, Botryosphaeria dothidea, and Fusarium pseudograminearum at a concentration of 100 μg/mL.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!