Previously, it was shown that the type 1 deiodinase (D1) is subject to substrate-dependent inactivation that is blocked by pretreatment with the inhibitor of D1 catalysis, propylthiouracil (PTU). Using HepG2 cells with endogenous D1 activity, we found that while considerable D1-mediated catalysis of reverse tri-iodothyronine (rT(3)) is observed in intact cells, there was a significant loss of D1 activity in sonicates assayed from the same cells in parallel. This rT(3)-mediated loss of D1 activity occurs despite no change in D1 mRNA levels and is blocked by PTU treatment, suggesting a requirement for catalysis. Endogenous D1 activity in sonicates was inactivated in a dose-dependent manner in HepG2 cells, with a ∼50% decrease after 10 nM rT(3) treatment. Inactivation of D1 was rapid, occurring after only half an hour of rT(3) treatment. D1 expressed in HEK293 cells was inactivated by rT(3) in a similar manner. (75)Se labeling of the D1 selenoprotein indicated that after 4 h rT(3)-mediated inactivation of D1 occurs without a corresponding decrease in D1 protein levels, though rT(3) treatment causes a loss of D1 protein after 8-24 h. Bioluminescence resonance energy transfer studies indicate that rT(3) exposure increases energy transfer between the D1 homodimer subunits, and this was lost when the active site of D1 was mutated to alanine, suggesting that a post-catalytic structural change in the D1 homodimer could cause enzyme inactivation. Thus, both D1 and type 2 deiodinase are subject to catalysis-induced loss of activity although their inactivation occurs via very different mechanisms.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3612969 | PMC |
http://dx.doi.org/10.1530/JOE-11-0459 | DOI Listing |
Burns Trauma
January 2025
Department of Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, No. 321 Zhongshan Road, Gulou District, Nanjing, Jiangsu 210008, China.
Background: Non-thyroidal illness syndrome is commonly observed in critically ill patients, characterized by the inactivation of systemic thyroid hormones (TH), which aggravates metabolic dysfunction. Recent evidence indicates that enhanced TH inactivation is mediated by the reactivation of type 3 deiodinase (Dio3) at the tissue level, culminating in a perturbed local metabolic equilibrium. This study assessed whether targeted inhibition of Dio3 can maintain tissue metabolic homeostasis under septic conditions and explored the mechanism behind Dio3 reactivation.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2025
Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131 Naples, Italy.
Background: Thyroid Hormones (THs) critically impact human cancer. Although endowed with both tumor-promoting and inhibiting effects in different cancer types, excess of THs has been linked to enhanced tumor growth and progression. Breast cancer depends on the interaction between bulk tumor cells and the surrounding microenvironment in which mesenchymal stem cells (MSCs) exert powerful pro-tumorigenic activities.
View Article and Find Full Text PDFJ Endocrinol Invest
January 2025
Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131, Naples, Italy.
Purpose: Type 2 deiodinase (D2), encoded by DIO2 gene, catalyzes the activation of the prohormone thyroxine (T4) into the bioactive hormone triiodothyronine (T3) in peripheral tissues, thereby regulating the intracellular Thyroid Hormone (TH) availability. Recently, several studies have demonstrated that a drastic increase in the peripheral activation of TH, via D2, fosters tumor progression, metastasis, and immunity.
Methods: To further prove the clinical relevance of D2 in human cancer, based on public Database of The Cancer Genome Atlas (TCGA), we conducted a pan-cancer analysis of DIO2 expression in various cancer types and investigated the association of DIO2 expression with the tumor microenvironment (TME) components and immune cell infiltration, along with the DIO2 genetic alteration types.
Ecotoxicol Environ Saf
January 2025
Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi, Guizhou 563003, China; Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, Guizhou 563000, China. Electronic address:
Thyroid hormone (TH) and it most active form triiodothyronine (T3) are crucial in promoting mitochondrial biogenesis and maintaining cellular homeostasis during the stress response, but their role in paraquat (PQ)-induced pulmonary fibrosis isunclear. The aim of this study was to examine whether there was a deficiency of TH in mouse lung tissue after PQ administration, and to explore the effect of T3, and potential mechanisms of action, in alleviation of PQ-induced pulmonary fibrosis. We found that the activity and expression of iodothyronine deiodinase 2 (DIO2), an enzyme that activates TH, were higher in the lungs of patients with pulmonary fibrosis than in controls.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, Jabłonna, 05-110, Poland.
Since the early discovery of QRFP43, intensive research has been primarily focused on its role in the modulation of food intake. As is widely recognised, the regulation of the body's energy status is a highly complex process involving numerous systems, hormones and neurotransmitters. Among the most important regulators of energy status, alongside the satiety and hunger centre located in the hypothalamus, is the HPT axis, which directly and indirectly affects the regulation of metabolism in all cells of the body.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!