Progressive accumulation of specific misfolded protein is a defining feature of amyotrophic lateral sclerosis (ALS), similarly seen in Alzheimer disease, Parkinson disease, Huntington disease and Creutzfeldt-Jakob disease. The intercellular transfer of inclusions made of tau, α-synuclein and huntingtin has been demonstrated, revealing the existence of mechanisms reminiscent of those by which prions spread through the nervous system. Evidence for such a prion-like propagation mechanism has now spread to the major misfolded proteins, superoxide dismutase 1 (SOD1) and the 43 kDa transactive response DNA binding protein (TDP-43), implicated in ALS. The focus in this review is on what is known about ALS progression in terms of clinical as well as molecular aspects. Furthermore, the concept of 'propagation' is dissected into contiguous and non-contiguous types, and this concept is expanded to the severity of the focal symptom as well as its regional spread which can be explained by cell to cell propagation in the local neuron pool.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3368493PMC
http://dx.doi.org/10.1136/jnnp-2011-301826DOI Listing

Publication Analysis

Top Keywords

amyotrophic lateral
8
lateral sclerosis
8
regional spreading
4
spreading amyotrophic
4
sclerosis motor
4
motor symptoms
4
symptoms explained
4
explained prion-like
4
prion-like propagation?
4
propagation? progressive
4

Similar Publications

Objective: To investigate the impact of different ventilatory support options on opioid use among patients with amyotrophic lateral sclerosis (ALS).

Methods: We retrospectively reviewed 889 consecutive patients with ALS and enrolled 399 eligible patients. All patients were followed until death or tracheostomy.

View Article and Find Full Text PDF

Single-cell RNA sequencing highlights the role of distinct natural killer subsets in sporadic amyotrophic lateral sclerosis.

J Neuroinflammation

January 2025

Memory Unit, Neurology Department and Institut de Recerca Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Sant Quintí 77-79, 08041, Barcelona, Spain.

Background: Neuroinflammation plays a major role in amyotrophic lateral sclerosis (ALS), and cumulative evidence suggests that systemic inflammation and the infiltration of immune cells into the brain contribute to this process. However, no study has investigated the role of peripheral blood immune cells in ALS pathophysiology using single-cell RNA sequencing (scRNAseq).

Methods: We aimed to characterize immune cells from blood and identify ALS-related immune alterations at single-cell resolution.

View Article and Find Full Text PDF

Mitochondria, the cellular powerhouses, are pivotal to neuronal function and health, particularly through their role in regulating synaptic structure and function. Spine reprogramming, which underlies synapse development, depends heavily on mitochondrial dynamics-such as biogenesis, fission, fusion, and mitophagy as well as functions including ATP production, calcium (Ca) regulation, and retrograde signaling. Mitochondria supply the energy necessary for assisting synapse development and plasticity, while also regulating intracellular Ca homeostasis to prevent excitotoxicity and support synaptic neurotransmission.

View Article and Find Full Text PDF

Introduction: T regulatory cells (Tregs) inversely correlate with disease progression in Amyotrophic Lateral Sclerosis (ALS) and fast-progressing ALS patients have been reported to exhibit dysfunctional, as well as reduced, levels of Tregs. This study aimed to evaluate the longitudinal changes in Tregs among ALS patients, considering potential clinical and biological modifiers of their percentages and concentrations. Additionally, we explored whether measures of ALS progression, such as the decline over time in the revised ALS Functional Rating Scale (ALSFRS-r) or forced vital capacity (FVC) correlated Treg levels and whether Treg phenotype varied during the course of ALS.

View Article and Find Full Text PDF

Tofersen and other antisense oligonucleotides in ALS.

Ther Adv Neurol Disord

January 2025

Department of Neurology, Ulm University, Ulm, Germany.

The advent of antisense oligonucleotide (ASO) therapies in neurodegenerative disorders is associated with enormous hope. Nusinersen treatment was a breakthrough intervention in the recessive disease spinal muscular atrophy, and superoxide dismutase 1 (SOD1) amyotrophic lateral sclerosis (ALS) seems to be the paradigm disease in dominant degenerative diseases. The results of treatment with the ASO tofersen in SOD1-ALS show that the drug has a convincing beneficial effect on ALS caused by SOD1 mutations, that preclinical studies in rodents predicted the therapeutic effect in the human disease, and that clinical efficacy is associated with a specific sequence of effects of the drug on mechanistic and degenerative biomarkers and, subsequently, functional outcomes such as weight stabilization and ALSFRS-R.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!