We studied the structure and diversity of the phyllosphere bacterial community of a Mediterranean ecosystem, in summer, the most stressful season in this environment. To this aim, we selected nine dominant perennial species, namely Arbutus unedo, Cistus incanus, Lavandula stoechas, Myrtus communis, Phillyrea latifolia, Pistacia lentiscus, Quercus coccifera (woody), Calamintha nepeta, and Melissa officinalis (herbaceous). We also examined the extent to which airborne bacteria resemble the epiphytic ones. Genotype composition of the leaf and airborne bacteria was analysed by using denaturing gradient gel electrophoresis profiling of a 16S rDNA gene fragment; 75 bands were cloned and sequenced corresponding to 28 taxa. Of these, two were found both in the air and the phyllosphere, eight only in the air, and the remaining 18 only in the phyllosphere. Only four taxa were found on leaves of all nine plant species. Cluster analysis showed highest similarity for the five evergreen sclerophyllous species. Aromatic plants were not grouped all together: the representatives of Lamiaceae, bearing both glandular and non-glandular trichomes, formed a separate group, whereas the aromatic and evergreen sclerophyllous M. communis was grouped with the other species of the same habit. The epiphytic communities that were the richest in bacterial taxa were those of C. nepeta and M. officinalis (Lamiaceae). Our results highlight the remarkable presence of lactic acid bacteria in the phyllosphere under the harsh conditions of the Mediterranean summer, the profound dissimilarity in the structure of bacterial communities in phyllosphere and air, and the remarkable differences of leaf microbial communities on neighbouring plants subjected to similar microbial inocula; they also point to the importance of the leaf glandular trichome in determining colonization patterns.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00248-012-0053-7DOI Listing

Publication Analysis

Top Keywords

airborne bacteria
12
bacterial community
8
community mediterranean
8
phyllosphere air
8
evergreen sclerophyllous
8
phyllosphere
6
exploring biodiversity
4
bacterial
4
biodiversity bacterial
4
mediterranean phyllosphere
4

Similar Publications

Pathogenic bioaerosols are critical for outbreaks of airborne disease; however, rapidly and accurately identifying pathogens directly from complex air environments remains highly challenging. We present an advanced method that combines open-set deep learning (OSDL) with single-cell Raman spectroscopy to identify pathogens in real-world air containing diverse unknown indigenous bacteria that cannot be fully included in training sets. To test and further enhance identification, we constructed the Raman datasets of aerosolized bacteria.

View Article and Find Full Text PDF

The quality of indoor air is dependent on a number of factors, including the presence of microorganisms that colonize the building materials. The potential for health risks associated with microbial contamination is a significant concern during the renovation of buildings. The aim of this study was to assess the impact of two reconstruction methods for historic buildings on air quality.

View Article and Find Full Text PDF

Sugarcane Pokkah Boeng Disease: Insights and Future Directions for Effective Management.

Life (Basel)

November 2024

CHEMBIOPRO Lab, Chimie et Biotechnologie des Produits Naturels, ESIROI Agroalimentaire, Université of Réunion Island, 97400 Saint-Denis, France.

Pokkah Boeng disease has been observed in nearly all countries where sugarcane is commercially cultivated. The disease was considered a minor concern in earlier times, but due to climate change, it has now become a major issue. It is caused by fungi, specifically the fungal complex.

View Article and Find Full Text PDF

A green and cost-effective sonochemical synthetic method was followed for coating silver-modified copper oxide (Ag-CuO) nanoparticles (NPs) on disposable surgical mask. The NP-coated masks were systematically characterized using XRD and FT-IR for understanding the structural and surface functionalities. In addition, the field emission scanning electron microscopy (FE-SEM) analysis showed the homogeneous coating of Ag-CuO NPs over the mask fibers.

View Article and Find Full Text PDF

Efficacy of Antimicrobial Dry Fog in Improving the Environmental Microbial Burden in an Inpatient Ward.

Antibiotics (Basel)

December 2024

Faculty of Medicine, Comenius University in Bratislava, 5th Department of Internal Medicine, University Hospital Bratislava, Ružinov, Špitálska 24, 813 72 Bratislava, Slovakia, and Ružinovská 4810/6, 821 01 Bratislava, Slovakia.

In healthcare environments with high microbial loads, effective infection control measures are critical for reducing airborne and surface contamination. One of the novel modalities in the achievement of these goals is the use of antimicrobial mists, such as droplets, in the form of dry fog. Although the usage of dry fog in the disinfection of contained healthcare microenvironments is well known, the effect of such a system in terms of a meaningful reduction in the microbial burden in an open inpatient ward is unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!