SN-38 loaded polymeric micelles to enhance cancer therapy.

Nanotechnology

Department of Biomedical Engineering, University of Alberta, Edmonton, AB, Canada.

Published: May 2012

7-Ethyl-10-hydroxycamptothecin (SN-38) loaded poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) (Pluronic F-108) and poly(ethylene glycol)-block-poly(ε-caprolactone) (PEG-b-PCL) nanoparticles were successfully prepared by a modified film hydration method and characterized by scanning electric microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM) and dynamic light scattering (DLS). Satisfactory drug loading of 20.73 ± 0.66% and a high encapsulation efficiency of 83.83 ± 1.32% were achieved. The SN-38 nanoparticles (SN-38 NPs) can completely disperse into a phosphate buffered saline (PBS) medium to produce a clear aqueous suspension that remains stable for up to three days. Total drug releases were 67.91% and 91.09% after 24 h in a PBS or fetal bovine serum (FBS) medium. Half maximal inhibitory concentration (IC(50)) tests of SN-38 and SN-38 NPs on A549 lung cells produced results of 200.0 ± 14.9 ng ml(-1) and 80.0 ± 4.6 ng ml(-1), respectively. Similarly, IC(50) tests of SN-38 and SN-38 NPs on MCF-7 breast cells yielded results of 16.0 ± 0.7 ng ml(-1) and 8.0 ± 0.5 ng ml(-1), respectively. These in vitro IC(50) studies show significant (p < 0.01) enhancement of the SN-38 NP drug efficiency in killing cancer cells in comparison to the free drug SN-38 control. All the materials used for this nanoformulation are approved by the US FDA, with the virtue of extremely low toxicity to normal cells.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0957-4484/23/20/205101DOI Listing

Publication Analysis

Top Keywords

sn-38 nps
12
sn-38
10
sn-38 loaded
8
ic50 tests
8
tests sn-38
8
sn-38 sn-38
8
loaded polymeric
4
polymeric micelles
4
micelles enhance
4
enhance cancer
4

Similar Publications

EGFR-targeting polydopamine nanoparticles co-loaded with 5-fluorouracil, irinotecan, and leucovorin to potentially enhance metastatic colorectal cancer therapy.

Sci Rep

November 2024

Departamento de Ingeniería Química y Textil, Universidad de Salamanca, Plaza de los Caídos s/n, 37008, Salamanca, Spain.

Despite all prevention programs, many cases of colorectal cancer (CRC) are diagnosed when they have already metastasized. Herein, chemotherapy is required, and combination of 5-fluorouracil, irinotecan, and leucovorin (FOLFIRI) is one of the first-line treatments chosen. However, it is so toxic that compromises patient outcomes.

View Article and Find Full Text PDF

Sustained Drug Release from Dual-Responsive Hydrogels for Local Cancer Chemo-Photothermal Therapy.

Macromol Biosci

November 2024

Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba, Sendai, Miyagi, 980-8577, Japan.

As an exceptional carrier for localized drug delivery to tumors, hydrogels can achieve prolonged drug release through careful design and adjustments, effectively targeting cancer cells and minimizing side effects. This study investigates a novel dual-responsive hydrogel system designed for the delivery of nanomedicines, focusing on drug release and the local antitumor efficacy of SN-38-cholesterol nanoparticles (SN-38-chol NPs) and polydopamine NPs (PDA NPs)/poly(n-isopropylacrylamide) (pNIPAM) hydrogels. By combining the thermosensitive properties of pNIPAM with the near-infrared (NIR) responsiveness of PDA NPs, the hydrogel aims to enhance on-demand drug release.

View Article and Find Full Text PDF

Background: Epidermal growth factor receptor (EGFR) is a major target for the treatment of colorectal cancer. Thus, anti-EGFR antibody conjugated lipid-polymer hybrid nanoparticles can offer a potential means of enhancing the efficacy of chemotherapeutics in EGFR overexpressing cancers. In addition, the combination of chemotherapy and photothermal therapy is a promising strategy for cancer treatment.

View Article and Find Full Text PDF

SN-38 is the active metabolite of irinotecan and acts as an effective topoisomerase I inhibitor with therapeutic effects on many malignant tumors, including some drug-resistant cancers. However, the poor solubility, low bioavailability, and severe dose-dependent toxicity limits the clinical application of SN-38. Currently, emerging macrophage membrane-coated nanoparticles provide an efficient biomimetic approach to develop novel SN-38 formulations for the reduction of its side effects.

View Article and Find Full Text PDF

[Gd(OH)][(SN-38)(FdUMP)] inorganic-organic hybrid nanoparticles (IOH-NPs) with a chemotherapeutic cocktail of ethyl-10-hydroxycamptothecin (SN-38, active form of irinotecan) and 5-fluoro-2'-deoxyuridine-5'-phosphate (FdUMP, active form of 5'-fluoruracil), 40 nm in size, are prepared in water. The IOH-NPs contain a total drug load of 63 wt% with 33 wt% of SN-38 and 30 wt% of FdUMP. Cell-based assays show efficient cellular uptake and promising anti-tumour activity on two pancreatic cancer cell lines of murine origin (KPC, Panc02).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!