Formation of a long-lived electron-transfer state in mesoporous silica-alumina composites enhances photocatalytic oxygenation reactivity.

Proc Natl Acad Sci U S A

Department of Material and Life Science, Division of Advanced Science and Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan.

Published: September 2012

A simple donor-acceptor linked dyad, 9-mesityl-10-methylacridinium ion (Acr(+)-Mes) was incorporated into nanosized mesoporous silica-alumina to form a composite, which in acetonitrile is highly dispersed. In this medium, upon visible light irradiation, the formation of an extremely long-lived electron-transfer state (Acr(•)-Mes(•+)) was confirmed by EPR and laser flash photolysis spectroscopic methods. The composite of Acr(+)-Mes-incorporated mesoporous silica-alumina with an added copper complex [(tmpa)Cu(II)] (ClO(4)(-))2 (tmpa = tris(2-pyridylmethyl)amine) acts as an efficient and robust photocatalyst for the selective oxygenation of p-xylene by molecular oxygen to produce p-tolualdehyde and hydrogen peroxide. Thus, incorporation of Acr(+)-Mes into nanosized mesoporous silica-alumina combined with an O(2)-reduction catalyst ([(tmpa)Cu(II)](2+)) provides a promising method in the development of efficient and robust organic photocatalysts for substrate oxygenation by dioxygen, the ultimate environmentally benign oxidant.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3465401PMC
http://dx.doi.org/10.1073/pnas.1119994109DOI Listing

Publication Analysis

Top Keywords

mesoporous silica-alumina
16
long-lived electron-transfer
8
electron-transfer state
8
nanosized mesoporous
8
efficient robust
8
formation long-lived
4
mesoporous
4
state mesoporous
4
silica-alumina
4
silica-alumina composites
4

Similar Publications

This study explores the synthesis of ZSM-5 zeolite using high-purity mesoporous silica exclusively derived from coal fly ash (CFA), eliminating the need for additional silica or alumina sources. Traditional ZSM-5 synthesis relies on costly and environmentally harmful pure chemicals, whereas this approach utilizes CFA, an industrial byproduct, addressing both cost and sustainability concerns. The synthesized ZSM-5 zeolite demonstrates exceptional purity, with a surface area of 455.

View Article and Find Full Text PDF

As an important nonoil route for acquiring aromatics, the highly efficient conversion of methanol to aromatics over Zn/ZSM-5 zeolites remains an ongoing challenge. In this work, we developed a uniform loading approach of zinc and further combined it with a hollow capsule structure to design the high-performance Zn/ZSM-5 catalyst. The electrostatic assembly among EDTA, -butylamine and negative silica-alumina gel gave rise to an "Inorganic-Organic Hybrid Sphere" in form of Na·{[(SiO)Al]/(SiO)(-butylamine)(EDTA)(-butylamine)(SiO), which further transformed into mesoporous aluminosilicates sphere (MASS) through calcination.

View Article and Find Full Text PDF

Porous clay heterostructures are a hybrid precursor between the pillaring process and organoclays. In this study, the organoclay was substituted by an aluminium intercalated species clay or pillared alumina clays. A porous clay heterostructure was successfully achieved from an aluminium intercalated species clay, due to the easy exchange of the aluminium species by the cosurfactant and silica species.

View Article and Find Full Text PDF

The use of heterogeneous catalysts to increase the development of green chemistry is a rapidly growing area of research to save industry money. In this paper, mesoporous SiO-AlO mixed oxide supports with various Si/Al ratios were prepared using two different sol-gel routes: hydrolytic sol-gel (HSG) and non-hydrolytic sol-gel (NHSG). The HSG route was investigated in both acidic and basic media, while the NHSG was explored in the presence of ethanol and diisopropyl ether as oxygen donors.

View Article and Find Full Text PDF

Herein, a zeolite@mesoporous silica composite (Z@MS) with a hierarchical porous structure was synthesized and employed as the filling material in miniature loudspeakers. The material was synthesized a simple surfactant-directed sol-gel process in which MFI zeolites with a high silica-alumina ratio (>1000) were encapsulated in mesoporous silica with worm-like pores templated by Brij 72 under acidic conditions. Pressure spray drying technology was adopted to reassemble the intermediate slurry into hierarchical porous microspheres with large particle sizes (∼200 μm).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!