The auditory brainstem response (ABR) is an acoustically evoked potential commonly used to determine hearing sensitivity in laboratory animals. Both isoflurane and ketamine/xylazine anesthesia are commonly used to immobilize animals during ABR procedures. Hearing threshold determination is often the primary interest. Although a number of studies have examined the effect of different anesthetics on evoked potential waveforms and growth functions, none have directly compared their effect on ABR hearing threshold estimates. The present study used a within-subject comparison and typical threshold criteria, to examine the effect of isoflurane and ketamine/xylazine on ABR thresholds for clicks and pure-tone stimuli extending from 8 to 32 kHz. At comparable physiological doses, hearing thresholds obtained with isoflurane (1.7% in O(2)) were on average elevated across a broad frequency range by greater than 27 dB compared to ketamine/xylazine (ketamine HCl, 50mg/kg; xylazine, 9 mg/kg). This highly significant threshold effect (F(1,6) = 158.3403, p = 3.51 × 10(-22)) demonstrates a substantial difference between general anesthetics on auditory brainstem sensitivity. Potential mechanisms and implications for ABR threshold determination under anesthesia are discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.heares.2012.04.005 | DOI Listing |
Elife
January 2025
Cognitive Neuroscience Department, University of Bielefeld (DE), Bielefeld, Germany.
Audiovisual information reaches the brain via both sustained and transient input channels, representing signals' intensity over time or changes thereof, respectively. To date, it is unclear to what extent transient and sustained input channels contribute to the combined percept obtained through multisensory integration. Based on the results of two novel psychophysical experiments, here we demonstrate the importance of the transient (instead of the sustained) channel for the integration of audiovisual signals.
View Article and Find Full Text PDFFASEB J
January 2025
Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe, Japan.
DFNA1 (deafness, nonsyndromic autosomal dominant 1), initially identified as nonsyndromic sensorineural hearing loss, has been associated with an additional symptom: macrothrombocytopenia. However, the timing of the onset of hearing loss (HL) and thrombocytopenia has not been investigated, leaving it unclear which occurs earlier. Here, we generated a knock-in (KI) DFNA1 mouse model, diaphanous-related formin 1 (DIA1), in which Aequorea coerulescens green fluorescent protein (AcGFP)-tagged human DIA1(p.
View Article and Find Full Text PDFCureus
December 2024
Ear Nose and Throat, Bahrain Defense Force Hospital, Royal Medical Services, Manama, BHR.
Objective: The aim of this study was to assess hearing level of preschoolers with delayed speech in order to detect any underlying hearing loss Methods: In this research we targeted preschool children with speech delay, who have not been previously diagnosed with any medical or psychological illnesses. A total of 54 preschool speech-delayed children were audiologically assessed in our clinic in the past year. The age at time of referral ranged from two to 7.
View Article and Find Full Text PDFHear Res
January 2025
Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, United States; Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, United States; Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, United States. Electronic address:
Sexually mature females of multiple mammalian species were previously reported to have increased peripheral auditory sensitivity, often measured as higher auditory brainstem response (ABR) wave I amplitude compared to males. Here, we determined potential hormonal and genetic (i.e.
View Article and Find Full Text PDFInt J Pediatr Otorhinolaryngol
January 2025
Level IV, Department of Health and Human Communication, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil. Electronic address:
Objective: To describe and compare the latencies and amplitudes of Mismatch Negativity between children with and without Developmental Dyslexia.
Methods: Cross-sectional and comparative study, consisting of a study group of 52 children with Developmental Dyslexia and a control group of 52 children with typical development, matched by age and sex, aged between 9 years and 11 years and 11 months of both sexes. All participants underwent Otoscopy, Acoustic Immittance Measurements, Pure Tone Audiometry, Speech Audiometry, Brainstem Auditory Evoked Potential and Mismatch Negativity.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!