A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Bone marrow-derived cells from the footprint infiltrate into the repaired rotator cuff. | LitMetric

Background: Cells from the bone marrow are considered important during the rotator cuff repair process, but the kinetics of bone marrow-derived cells in this process is unknown.

Purpose: To analyze the kinetics of bone marrow cells during the rotator cuff repair process, to review whether or not they are histologically involved in rotator cuff healing, and to analyze the biomechanics of the repaired tissues.

Methods: Bone marrow chimeric rats that express green fluorescent protein (GFP) only in bone marrow- and circulation-derived cells were created. Bilateral supraspinatus tendons were separated from the greater tuberosity of the humeral head to produce a rotator cuff transection model. Drilling into the bone marrow was performed in the greater tuberosity of the right humerus and the supraspinatus tendon was repaired (drilling group), while the supraspinatus tendon was repaired on the left shoulder without drilling (control group). We examined the histology of the rotator cuff, the ultimate force-to-failure, and the proportion of GFP-positive cells in the repaired rotator cuff at 2, 4 and 8 weeks after surgery.

Results: Mesenchymal cells were observed in the repaired rotator cuff at 2 weeks in both groups. There were more GFP-positive cells in the drilling group than the control group at 2, 4 and 8 weeks. The ultimate force-to-failure was significantly higher in the drilling group than the control group at 4 and 8 weeks.

Conclusion: Bone marrow-derived cells passed through holes drilled in the humerus footprint, infiltrated the repaired rotator cuff and contributed to postsurgical rotator cuff healing.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jse.2012.02.007DOI Listing

Publication Analysis

Top Keywords

rotator cuff
40
repaired rotator
16
bone marrow
16
bone marrow-derived
12
marrow-derived cells
12
drilling group
12
control group
12
rotator
10
cuff
10
cells
9

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!