We investigated changes of bacterial abundance and biodiversity during bioremediation experiments carried out on oxic and anoxic marine harbor sediments contaminated with hydrocarbons. Oxic sediments, supplied with inorganic nutrients, were incubated in aerobic conditions at 20 °C and 35 °C for 30 days, whereas anoxic sediments, amended with organic substrates, were incubated in anaerobic conditions at the same temperatures for 60 days. Results reported here indicate that temperature exerted the main effect on bacterial abundance, diversity and assemblage composition. At higher temperature bacterial diversity and evenness increased significantly in aerobic conditions, whilst decreased in anaerobic conditions. In both aerobic and anaerobic conditions, biodegradation efficiencies of hydrocarbons were significantly and positively related with bacterial richness and evenness. Overall results presented here suggest that bioremediation strategies, which can sustain high levels of bacterial diversity rather than the selection of specific taxa, may significantly increase the efficiency of hydrocarbon degradation in contaminated marine sediments.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2012.03.043DOI Listing

Publication Analysis

Top Keywords

anaerobic conditions
12
marine sediments
8
bacterial abundance
8
aerobic conditions
8
bacterial diversity
8
sediments
5
bacterial
5
conditions
5
high bacterial
4
bacterial biodiversity
4

Similar Publications

One-Pot lignin bioconversion to polyhydroxyalkanoates based on hierarchical utilization of heterogeneous compounds.

Bioresour Technol

January 2025

Department of Chemical and Biomolecular Engineering, National University of Singapore, S117585, Singapore; Energy and Environmental Sustainability Solutions for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), S138602, Singapore. Electronic address:

Pseudomonas putida degraded 35 % of compounds in alkali-pretreated lignin liquor under nitrogen-replete conditions but with low polyhydroxyalkanoates (PHA) production, while limiting nitrogen supplement improved PHA content (PHA/dry cell weight) to 43 % at the expense of decreased lignin degradation of 22 %. Increase of initial cell biomass (0.1-1.

View Article and Find Full Text PDF

Microalgae-based membrane bioreactor for wastewater treatment, biogas production, and sustainable energy: a review.

Environ Res

January 2025

Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor, West Java 45363, Indonesia; Research Collaboration Center for Biomass and Biorefinery between BRIN and Universitas Padjadjaran, Jatinangor, West Java 45363, Indonesia.

Managing wastewater and using renewable energy sources are challenges in achieving Sustainable Development Goals. This study provides an overview of the factors influencing the performance of algae-based membrane bioreactors (AMBRs) for contaminant removal from wastewater and biogas. This review highlights that the performance of AMBRs in removing total phosphorus (TP) and nitrogen (N) from wastewater can reach up to 93% and 97%, depending on parameters such as pH, hydraulic retention time (HRT), and algae concentration.

View Article and Find Full Text PDF

The Hepatincolaceae (Alphaproteobacteria) are a group of bacteria that inhabit the gut of arthropods and other ecdysozoans, associating extracellularly with microvilli. Previous phylogenetic studies, primarily single-gene analyses, suggested their relationship to the Holosporales, which includes intracellular bacteria in protist hosts. However, the genomics of Hepatincolaceae is still in its early stages.

View Article and Find Full Text PDF

Resilience and Response of Anaerobic Digestion Systems to Short-term Hydraulic Loading Shocks: Focusing on Total and Active Microbial Community Dynamics.

Environ Res

January 2025

Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Canada; School of Civil & Environmental Engineering, Queensland University of Technology, Brisbane, QLD, Australia.

Anaerobic digestion is known to be sensitive to operational changes, such as hydraulic loading shock, yet the impact on the microbiome, particularly the active RNA-based community, has not been fully understood. This study aimed to investigate the performance of anaerobic reactors and their microbial communities under short-term hydraulic loading shocks. Using synthetic wastewater, the reactor was subjected to 24-hour shocks at three-fold and seven-fold the baseline loading rate, followed by DNA and RNA analyses to assess the system's resiliency and microbial responses.

View Article and Find Full Text PDF

Peri-implantitis associated with dental implants shares characteristics with destructive periodontal diseases. Both conditions are multifactorial and strongly correlated with the presence of microorganisms surrounding the prostheses or natural dentition. This study aimed to evaluate the antimicrobial activity and toxicity of a mucoadhesive hydrogel functionalized with aminochalcone (HAM-15) against Aggregatibacter actinomycetemcomitans, Fusobacterium periodonticum, Prevotella intermedia, Porphyromonas gingivalis, Tannerella forsythia, and Candida albicans.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!