Hypofunction of brain N-methyl-d-aspartate (NMDA) receptors has been implicated in psychiatric disorders such as schizophrenia and Alzheimer's disease. Inhibition of glycine transporter-1 (GlyT1) is expected to increase glycine, a co-agonist of the NMDA receptor and, consequently, to facilitate NMDA receptor function. We have identified ASP2535 (4-[3-isopropyl-5-(6-phenyl-3-pyridyl)-4H-1,2,4-triazol-4-yl]-2,1,3-benzoxadiazole) as a novel GlyT1 inhibitor, and here describe our in vitro and in vivo characterization of this compound. ASP2535 potently inhibited rat GlyT1 (IC(50)=92 nM) with 50-fold selectivity over rat glycine transporter-2 (GlyT2). It showed minimal affinity for many other receptors except for μ-opioid receptors (IC(50)=1.83 μM). Oral administration of ASP2535 dose-dependently inhibited ex vivo [(3)H]-glycine uptake in mouse cortical homogenate, suggesting good brain permeability. This profile was confirmed by pharmacokinetic analysis. We then evaluated the effect of ASP2535 on animal models of cognitive impairment in schizophrenia and Alzheimer's disease. Working memory deficit in MK-801-treated mice and visual learning deficit in neonatally phencyclidine (PCP)-treated mice were both attenuated by ASP2535 (0.3-3mg/kg, p.o. and 0.3-1mg/kg, p.o., respectively). ASP2535 (1-3mg/kg, p.o.) also improved the PCP-induced deficit in prepulse inhibition in rats. Moreover, the working memory deficit in scopolamine-treated mice and the spatial learning deficit in aged rats were both attenuated by ASP2535 (0.1-3mg/kg, p.o. and 0.1mg/kg, p.o., respectively). These studies provide compelling evidence that ASP2535 is a novel and centrally-active GlyT1 inhibitor that can improve cognitive impairment in animal models of schizophrenia and Alzheimer's disease, suggesting that ASP2535 may satisfy currently unmet medical needs for the treatment of these diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejphar.2012.04.013 | DOI Listing |
Cells
January 2025
Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea.
Phosphodiesterase (PDE) enzymes regulate intracellular signaling pathways crucial for brain development and the pathophysiology of neurological disorders. Among the 11 PDE subtypes, PDE4 and PDE5 are particularly significant due to their regulation of cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) signaling, respectively, which are vital for learning, memory, and neuroprotection. This review synthesizes current evidence on the roles of PDE4 and PDE5 in neurological health and disease, focusing on their regulation of second messenger pathways and their implications for brain function.
View Article and Find Full Text PDFBrain Sci
January 2025
Department of Biomedical Engineering, Imam Reza International University, Mashhad 91388-3186, Iran.
Background/objectives: The classification of psychological disorders has gained significant importance due to recent advancements in signal processing techniques. Traditionally, research in this domain has focused primarily on binary classifications of disorders. This study aims to classify five distinct states, including one control group and four categories of psychological disorders.
View Article and Find Full Text PDFSemin Thromb Hemost
January 2025
Department of Neurology, Sheba Medical Center, Tel Ha'Shomer, Israel.
Coagulation factors are intrinsically expressed in various brain cells, including astrocytes and microglia. Their interaction with the inflammatory system is important for the well-being of the brain, but they are also crucial in the development of many diseases in the brain such as stroke and traumatic brain injury. The cellular effects of coagulation are mediated mainly by protease-activated receptors.
View Article and Find Full Text PDFFront Cell Neurosci
January 2025
Reserach Unit "Drosophila"UR22ES03, Faculty of Medicine, University of Sfax, Sfax, Tunisia.
Background: The human gut mycobiome, a minor but integral component of the gut microbiome, has emerged as a significant player in host homeostasis and disease development. While bacteria have traditionally been the focus of gut microbiome studies, recent evidence suggests that fungal communities (mycobiota) may also play a crucial role in modulating health, particularly in neuropsychiatric disorders.
Objective: This review aims to provide a comprehensive overview of current knowledge on the relationship between the gut mycobiome and neuropsychiatric disorders, exploring the potential of targeting fungal communities as a novel therapeutic strategy.
Rev Neurosci
January 2025
Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Children's Medical Center Hospital, Dr. Qarib St, Keshavarz Blvd, Tehran 14194, Iran.
Fast spiking parvalbumin (PV) interneuron is an inhibitory gamma-aminobutyric acid (GABA)ergic interneuron diffused in different brain networks, including the cortex and hippocampus. As a key component of brain networks, PV interneurons collaborate in fundamental brain functions such as learning and memory by regulating excitation and inhibition (E/I) balance and generating gamma oscillations. The unique characteristics of PV interneurons, like their high metabolic demands and long branching axons, make them too vulnerable to stressors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!