The rodA(Sui) mutation allows cell division to take place at 42 degrees C in ftsI23 mutant cells, which produce a thermolabile penicillin-binding protein 3 (PBP3, the septation-specific peptidoglycan transpeptidase). We show here that the mutation in rodA is a single-base change from a glutamine to a chain termination (amber) codon, and that an amber suppressor (supE) present in the strain restores the ability to produce a reduced level of normal RodA protein. The reduced level of RodA is accompanied by an increase in the levels of two other proteins (PBP2 and PBP5) encoded by genes in the rodA operon. We show that an increased level of PBP5 is by itself sufficient to restore cell division to ftsI23 cells at 42 degrees C. Two other treatments were found to restore division capacity to the mutant: an increase in PBP6 (which is a D-alanine carboxypeptidase like PBP5) or suitable concentrations of D-cycloserine. All of the above treatments have the effect of reducing the number of pentapeptide side chains in peptidoglycan and increasing the number of tripeptides. We conclude that the effect of the rodA(Sui) mutation is to indirectly increase the availability of tripeptide side chains, which are used preferentially by PBP3 as acceptors in transpeptidation. A change in the proportions of different kinds of peptide side chain in the peptidoglycan can therefore determine whether cells will divide.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC210782PMC
http://dx.doi.org/10.1128/jb.172.12.6697-6703.1990DOI Listing

Publication Analysis

Top Keywords

cells will
8
rodasui mutation
8
cell division
8
reduced level
8
side chains
8
balance peptidoglycan
4
peptidoglycan precursors
4
precursors determines
4
determines escherichia
4
escherichia coli
4

Similar Publications

Background And Aims: Sensitivity to immune checkpoint inhibitor (ICI) therapy depends in part on the genetic and epigenetic makeup of cancer cells, and CD8 T-lymphocytes that mediate immune responses. Epigenetics are heritable reversible changes in gene expression that occur without any changes in the nuclear DNA sequence or DNA copy number.

Primary Objective: i.

View Article and Find Full Text PDF

Purpose: The main purpose of the study was the formulation development of nanogels (NHs) composed of chondroitin sulfate (CS) and low molecular weight chitosan (lCH), loaded with a naringenin-β-cyclodextrin complex (NAR/β-CD), as a potential treatment for early-stage diabetic retinopathy.

Methods: Different formulations of NHs were prepared by varying polymer concentration, lCH ratio, and pH and, then, characterized for particle size, zeta potential, particle concentration (particles/mL) and morphology. Cytotoxicity and internalization were assessed in vitro using Human Umbilical Vein Endothelial Cells (HUVEC).

View Article and Find Full Text PDF

Two-pore channel regulators - Who is in control?

Front Physiol

January 2025

Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-University, Munich, Germany.

Two-pore channels (TPCs) are adenine nucleotide and phosphoinositide regulated cation channels. NAADP activates and ATP blocks TPCs, while the endolysosomal phosphoinositide PI(3,5)P activates TPCs. TPCs are ubiquitously expressed including expression in the innate as well as the adaptive immune system.

View Article and Find Full Text PDF

In 2001, Tang's team discovered a unique type of luminogens with substantial enhanced fluorescence upon aggregation and introduced the concept of "aggregation-induced emission (AIE)". Unlike conventional fluorescent materials, AIE luminogens (AIEgens) emit weak or no fluorescence in solution but become highly fluorescent in aggregated or solid states, due to a mechanism known as restriction of intramolecular motions (RIM). Initially considered a purely inorganic chemical phenomenon, AIE was later applied in biomedicine to improve the sensitivity of immunoassays.

View Article and Find Full Text PDF

Nociception is the process by which sensory neurons detect and encode potentially harmful environmental stimuli to generate behavioral responses. Nociceptor neurons exhibit plasticity in which their sensitivity to noxious stimuli and subsequent ability to drive behavior may be altered by environmental conditions, injury, infection, and inflammation. In some cases, nociceptor sensitization requires regulated changes in gene expression, and recent studies have indicated roles for post-transcriptional mechanisms in regulating these changes as an aspect of nociceptor plasticity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!