The utilization of molecular endpoints in ecotoxicology can provide rapid and valuable information on immediate organismal responses to chemical stressors and is increasingly used for mechanistic interpretation of effects at higher levels of biological organization. This study contributes knowledge on the sublethal effects of a commonly used insecticide, the phenylpyrazole fipronil, on larval fathead minnow (Pimephales promelas), utilizing a quantitative transcriptomic approach. Immediately after 24h of exposure to fipronil concentrations of ≥31 μg.L(-1), highly significant changes in gene transcription were observed for aspartoacylase, metallothionein, glucocorticoid receptor, cytochrome P450 3A126 and vitellogenin. Different mechanisms of toxicity were apparent over the course of the experiment, with short-term responses indicating neurotoxic effects. After 6 days of recovery, endocrine effects were observed with vitellogenin being up-regulated 90-fold at 61 μg.L(-1) fipronil. Principal component analysis demonstrated a significant increase in gene transcription changes over time and during the recovery period. In conclusion, multiple mechanisms of action were observed in response to fipronil exposure, and unknown delayed effects would have been missed if transcriptomic responses had only been measured at a single time-point. These challenges can be overcome by the inclusion of multiple endpoints and delayed effects in experimental designs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2012.04.005 | DOI Listing |
Proc Natl Acad Sci U S A
February 2025
Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, China.
Recent studies have demonstrated that chronic stress can enhance the development of multiple human diseases, including cancer. However, the role of chronic stress in esophageal carcinogenesis and its underlying molecular mechanisms remain unclear. This study uncovered that dysregulated cholesterol metabolism significantly promotes esophageal carcinogenesis under chronic stress conditions.
View Article and Find Full Text PDFPLoS Pathog
January 2025
Department of Cancer and Genomic Sciences, College of Medicine and Health, University of Birmingham, Birmingham, United Kingdom.
Upon infection, human papillomavirus (HPV) manipulates host cell gene expression to create an environment that is supportive of a productive and persistent infection. The virus-induced changes to the host cell's transcriptome are thought to contribute to carcinogenesis. Here, we show by RNA-sequencing that oncogenic HPV18 episome replication in primary human foreskin keratinocytes (HFKs) drives host transcriptional changes that are consistent between multiple HFK donors.
View Article and Find Full Text PDFPLoS Pathog
January 2025
Discovery Research Platform for Hidden Cell Biology, University of Edinburgh, Edinburgh, Scotland, UK.
The coronavirus HCoV-OC43 circulates continuously in the human population and is a frequent cause of the common cold. Here, we generated a high-resolution atlas of the transcriptional and translational landscape of OC43 during a time course following infection of human lung fibroblasts. Using ribosome profiling, we quantified the relative expression of the canonical open reading frames (ORFs) and identified previously unannotated ORFs.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Chemistry, Ashoka University, Sonipat, Haryana, India.
Pancreatic Ductal Adenocarcinoma (PDAC) is a devastating disease with poor clinical outcomes, which is mainly because of delayed disease detection, resistance to chemotherapy, and lack of specific targeted therapies. The disease's development involves complex interactions among immunological, genetic, and environmental factors, yet its molecular mechanism remains elusive. A major challenge in understanding PDAC etiology lies in unraveling the genetic profiling that governs the PDAC network.
View Article and Find Full Text PDFRedox Rep
December 2025
Department of Cardiology, Fujian Medical University Union Hospital, Fuzhou, Fujian, People's Republic of China.
Objective: Myocardial ischemia-reperfusion injury (MIRI) is a highly complex disease with high morbidity and mortality. Studying the molecular mechanism of MIRI and discovering new targets are crucial for the future treatment of MIRI.
Methods: We constructed the MIRI rat model and hypoxia/reoxygenation (H/R) injury cardiomyocytes model.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!