Cortical motor maps are the basis of voluntary movement, but they have proven difficult to understand in the context of their underlying neuronal circuits. We applied light-based motor mapping of Channelrhodopsin-2 mice to reveal a functional subdivision of the forelimb motor cortex based on the direction of movement evoked by brief (10 ms) pulses. Prolonged trains of electrical or optogenetic stimulation (100-500 ms) targeted to anterior or posterior subregions of motor cortex evoked reproducible complex movements of the forelimb to distinct positions in space. Blocking excitatory cortical synaptic transmission did not abolish basic motor map topography, but the site-specific expression of complex movements was lost. Our data suggest that the topography of movement maps arises from their segregated output projections, whereas complex movements evoked by prolonged stimulation require intracortical synaptic transmission.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuron.2012.02.028DOI Listing

Publication Analysis

Top Keywords

complex movements
12
motor map
8
map topography
8
motor cortex
8
synaptic transmission
8
motor
6
distinct cortical
4
cortical circuit
4
circuit mechanisms
4
complex
4

Similar Publications

Background: The number of people living with congenital heart disease (CHD) in 2017 was estimated to be 12 million, which was 19% higher than that in 1990. However, their death rate declined by 35%, emphasizing the importance of monitoring their quality of life due to its impact on several patient outcomes. The main objective of this study is to analyze how parents' psychosocial factors contribute to children's and adolescents' perceptions of their QoL, focusing on their medical condition.

View Article and Find Full Text PDF

The complex interplay between low- and high-level mechanisms governing our visual system can only be fully understood within ecologically valid naturalistic contexts. For this reason, in recent years, substantial efforts have been devoted to equipping the scientific community with datasets of realistic images normed on semantic or spatial features. Here, we introduce VISIONS, an extensive database of 1136 naturalistic scenes normed on a wide range of perceptual and conceptual norms by 185 English speakers across three levels of granularity: isolated object, whole scene, and object-in-scene.

View Article and Find Full Text PDF

Most sports and leisure activities involve repetitive movements in the upper limb, which are typically linked to pain and discomfort in the neck and shoulder area. Movement variability is generally expressed by changes in movement parameters from one movement to another and is a time-dependent feature of repetitive activities. The purpose of this study was to examine the effect of repeated movement-induced fatigue on biomechanical coordination and variability in athletes with and without chronic shoulder pain (CSP).

View Article and Find Full Text PDF

Key shifts in frontoparietal network activity in Parkinson's disease.

NPJ Parkinsons Dis

January 2025

Brain Electrophysiology and Epilepsy Lab (BEE-L), Epilepsy and EEG Unit, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.

We aimed to study the effect of Parkinson's disease (PD) and motor-cognitive load on the interplay between activation level and spatial complexity. To that end, 68 PD patients and 30 controls underwent electroencephalography (EEG) recording while executing visual single- and dual- Go/No-go tasks. The EEG underwent source localization, followed by parcellation of the neural activity into 116 regions of interest.

View Article and Find Full Text PDF

Corticomuscular Coherence Existed at the Single Motor Unit Level.

Neuroimage

January 2025

School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, Shandong, China.

The monosynaptic cortico-motoneuronal connections suggest the possibility of individual motor units (MUs) receiving independent commands from motor cortex. However, previous studies that used corticomuscular coherence (CMC) between electroencephalogram (EEG) signals and electromyogram (EMG) signals have not directly explored the corticospinal functionality at the single motoneuron level. The objective of this study is to find out whether synchronous activities exist between the motor cortex and individual MUs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!