How mutant prion protein (PrP) leads to neurological dysfunction in genetic prion diseases is unknown. Tg(PG14) mice synthesize a misfolded mutant PrP which is partially retained in the neuronal endoplasmic reticulum (ER). As these mice age, they develop ataxia and massive degeneration of cerebellar granule neurons (CGNs). Here, we report that motor behavioral deficits in Tg(PG14) mice emerge before neurodegeneration and are associated with defective glutamate exocytosis from granule neurons due to impaired calcium dynamics. We found that mutant PrP interacts with the voltage-gated calcium channel α(2)δ-1 subunit, which promotes the anterograde trafficking of the channel. Owing to ER retention of mutant PrP, α(2)δ-1 accumulates intracellularly, impairing delivery of the channel complex to the cell surface. Thus, mutant PrP disrupts cerebellar glutamatergic neurotransmission by reducing the number of functional channels in CGNs. These results link intracellular PrP retention to synaptic dysfunction, indicating new modalities of neurotoxicity and potential therapeutic strategies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3339322PMC
http://dx.doi.org/10.1016/j.neuron.2012.02.027DOI Listing

Publication Analysis

Top Keywords

mutant prp
20
granule neurons
12
glutamatergic neurotransmission
8
cerebellar granule
8
α2δ-1 subunit
8
tgpg14 mice
8
mutant
6
prp
6
prp suppresses
4
suppresses glutamatergic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!