Systemic infusion of bone marrow mesenchymal stem cells (BMMSCs) yields therapeutic benefit for a variety of autoimmune diseases, but the underlying mechanisms are poorly understood. Here we show that in mice systemic infusion of BMMSCs induced transient T cell apoptosis via the FAS ligand (FASL)-dependent FAS pathway and could ameliorate disease phenotypes in fibrillin-1 mutated systemic sclerosis (SS) and dextran-sulfate-sodium-induced experimental colitis. FASL(-/-) BMMSCs did not induce T cell apoptosis in recipients, and could not ameliorate SS and colitis. Mechanistic analysis revealed that FAS-regulated monocyte chemotactic protein 1 (MCP-1) secretion by BMMSCs recruited T cells for FASL-mediated apoptosis. The apoptotic T cells subsequently triggered macrophages to produce high levels of TGFβ, which in turn led to the upregulation of CD4(+)CD25(+)Foxp3(+) regulatory T cells and, ultimately, immune tolerance. These data therefore demonstrate a previously unrecognized mechanism underlying BMMSC-based immunotherapy involving coupling via FAS/FASL to induce T cell apoptosis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3348385 | PMC |
http://dx.doi.org/10.1016/j.stem.2012.03.007 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!