Reactive transport modeling is a powerful tool to evaluate systems with complex geochemical relations. However, parameters are not always directly measurable. This study represents one of the first attempts to obtain hydrologic, transport and geochemical parameters from an experimental dataset involving transient unsaturated water flow and solute transport, using an automatic inverse optimization (or calibration) algorithm. The data come from previously published, controlled laboratory experiments on the transport of major cations (Na, K, Mg, Ca) during water absorption into horizontal soil columns that were terminated at different times. Experimental data consisted of the depth profiles of water contents (θ), Cl concentrations, and total aqueous and sorbed concentrations of major cations. The dataset was used to optimize several parameters using the reactive transport model, HP1 and the generic optimization code, UCODE. Although the soil hydraulic and solute transport parameters were also optimized, the study focused mainly on the geochemical parameters because the soil columns were constructed from disturbed soil. The cation exchange capacity and the cation exchange coefficients for two exchange models (Gapon and Rothmund-Kornfeld) were optimized. The results suggest that both calibrated models satisfactorily described the experimental data, although the Rothmund-Kornfeld model fit was slightly better. However, information content and surface response analyses indicated that parameters of the Gapon model are well identifiable, whereas those of the Rothmund-Kornfeld model were strongly correlated. The calibrated geochemical parameters were validated using an independent dataset. In agreement with the identifiability analysis, the Gapon approach was better than the Rothmund-Kornfeld model at calculating the observed concentrations of major cations in the soil solution and on the exchange sites.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jconhyd.2012.03.008DOI Listing

Publication Analysis

Top Keywords

cation exchange
16
solute transport
12
geochemical parameters
12
major cations
12
rothmund-kornfeld model
12
inverse optimization
8
hydraulic solute
8
parameters
8
reactive transport
8
soil columns
8

Similar Publications

The performance of Cu-exchanged chabazite (Cu-CHA) for the ammonia-assisted selective catalytic reduction of NO (NH-SCR) depends critically on the presence of paired complexes. Here, a machine-learning force field augmented with long-range Coulomb interactions is developed to investigate the effect of Al-distribution and Cu-loading on the mobility and pairing of complexes. Performing unbiased and constrained molecular dynamics simulations, we obtain unique information inaccessible to first-principle calculations and experiments.

View Article and Find Full Text PDF

Clay-catalyzed ozonation of Norfloxacin - Effects of metal cation and degradation rate on aqueous media toxicity towards Lemna minor.

Chemosphere

January 2025

Nanoqam, Department of Chemistry, University of Quebec at Montreal, H3C 3P8, Canada; École de technologie supérieure, Montréal (Québec), Canada, H3C 1K3. Electronic address:

Article Synopsis
  • Norfloxacin was ozonized in clay suspensions to study its toxicity on Lemna minor, which helps assess antibiotic impact in environments with clay.
  • The study found that norfloxacin causes toxicity in Lemna minor through oxidative stress, worsened by ozonation, affecting growth and chlorophyll levels.
  • Results indicate that the type of clay catalyst and the oxidation process influence the toxicity outcomes, revealing the potential formation of more harmful byproducts from the antibiotic.
View Article and Find Full Text PDF

Adding colour to ion-selective membranes.

Talanta

January 2025

Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland. Electronic address:

An idea of using ion-exchanger salt containing optically active cations to prepare ion-selective membranes is proposed. Although the presence of an ion-exchanger in the composition of neutral ionophore based sensors is necessary, the choice of available salts for cation-selective sensors preparation, is usually limited to sodium or potassium compounds. In this work we propose application of an alternative salt, using a cation optically active both in absorption and emission mode as a mobile one.

View Article and Find Full Text PDF

Transport mechanisms of the anthropogenic contaminant sulfamethoxazole in volcanic ash soils at equilibrium pH evaluated using the HYDRUS-1D model.

J Hazard Mater

January 2025

Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Santiago 7820436, Chile; Instituto para el Desarrollo Sustentable, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Santiago 7820436, Chile; Centro para el Desarrollo de la Nanociencia y Nanotecnología, CEDENNA, Santiago, Chile. Electronic address:

The volcanic soils in Chile, where a significant portion of agricultural activities take place, are impacted by the presence of veterinary drugs, including sulfamethoxazole (SMX). The study examines how different soil types influence the movement and retention of sulfamethoxazole (SMX) across four regions of Chile, focusing on conditions at a neutral pH of 7.0.

View Article and Find Full Text PDF

Changes in species' habitats provide important insights into the effects of climate change. , a critically endangered species endemic to karst ecosystems, has a highly restricted distribution and is a key biological resource. Despite its ecological importance, the factors influencing its habitat suitability and distribution remain poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!