Short-term exposure to ambient air pollution is associated with increased cardiovascular mortality and morbidity. This adverse health effect is suggested to be mediated by inflammatory processes. The purpose of this study was to determine if low levels of particulate matter, typical for smaller cities, are associated with acute systemic inflammation. Fifty-two elderly individuals with ischemic heart disease were followed for six months with biweekly clinical visits in the city of Kotka, Finland. Blood samples were collected for the determination of inflammatory markers interleukin (IL)-1β, IL-6, IL-8, IL-12, interferon (IFN)γ, C-reactive protein (CRP), fibrinogen, myeloperoxidase and white blood cell count. Particle number concentration and fine particle (particles with aerodynamic diameters <2.5 μm (PM(2.5))) as well as thoracic particle (particles with aerodynamic diameters <10 μm (PM(10))) mass concentration were measured daily at a fixed outdoor measurement site. Light-absorbance of PM(2.5) filter samples, an indicator of combustion derived particles, was measured with a smoke-stain reflectometer. In addition, personal exposure to PM(2.5) was measured with portable photometers. During the study period, wildfires in Eastern Europe led to a 12-day air pollution episode, which was excluded from the main analyses. Average ambient PM(2.5) concentration was 8.7 μg/m(3). Of the studied pollutants, PM(2.5) and absorbance were most strongly associated with increased levels of inflammatory markers; most notably with C-reactive protein and IL-12 within a few days of exposure. There was also some evidence of an effect of particulate air pollution on fibrinogen and myeloperoxidase. The concentration of IL-12 was considerably (227%) higher during than before the forest fire episode. These findings show that even low levels of particulate air pollution from urban sources are associated with acute systemic inflammation. Also particles from wildfires may exhibit pro-inflammatory effects.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envres.2012.04.004 | DOI Listing |
Eur J Prev Cardiol
January 2025
Department of Occupational and Environmental Medicine, Bispebjerg Hospital, Copenhagen, Denmark.
Aims: Exposure to air pollution including diesel engine exhaust (DEE) is associated with increased risk of acute myocardial infarction (AMI). Few studies have investigated the risk of AMI according to occupational exposure to DEE. The aim of this study was to evaluate the association between occupational exposure to DEE and the risk of first-time AMI.
View Article and Find Full Text PDFJ Pineal Res
January 2025
Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany.
Circadian clocks in the body drive daily cycles in physiology and behavior. A master clock in the brain maintains synchrony with the environmental day-night cycle and uses internal signals to keep clocks in other tissues aligned. Work in cell cultures uncovered cyclic changes in tissue oxygenation that may serve to reset and synchronize circadian clocks.
View Article and Find Full Text PDFOrg Biomol Chem
January 2025
Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu-632014, India.
A porphyrin comprising a carboxyl-functionalized pyridine moiety was synthesized and characterized using H NMR, C NMR, FT-IR, powder-XRD, BET, ICP-MS, SEM and EDAX. The proton level (H = 1.19) and energy band gap (1.
View Article and Find Full Text PDFEnviron Res
January 2025
Department of Civil, Environmental, & Architectural Engineering, Worcester Polytechnic Institute, Worcester, MA, United States. Electronic address:
The growing impact of climate change and escalating wildfire seasons has led to heightened ambient air pollution, potentially affecting children's sleep health. However, current epidemiological research often relies on outdoor weather data to model the environmental impacts on sleep health, potentially mischaracterizing the actual bedroom environment. To address these challenges, we conducted experiments to investigate the relationships among ambient, indoor, and personal exposure to PM concentrations and obstructive sleep apnea (OSA) in children.
View Article and Find Full Text PDFIntroduction: Short-term exposure to air pollution may worsen the course of ischemic heart disease (IHD), causing acute and chronic coronary syndromes.
Objectives: This study aimed to assess the risk of hospital admission due to chronic and acute coronary syndromes (ACS) after exposure to various air pollutants in Poland.
Methods: In this time-series study, the risk of hospital admission due to IHD over 3 days from exposure to several air pollutants was evaluated.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!