Solid sampling (SS) graphite furnace atomic absorption spectrometry (GFAAS) and solution-based (SB) methods of GFAAS, flame atomic absorption spectrometry (FAAS), inductively coupled plasma optical emission spectrometry (ICP-OES) and inductively coupled plasma mass spectrometry (ICP-MS) were elaborated and/or optimized for the determination of Cr, Fe and Mn trace elements used as dopants in lithium niobate optical crystals. The calibration of the SS-GFAAS analysis was possible with the application of the three-point-estimation standard addition method, while the SB methods were mostly calibrated against matrix-matched and/or acidic standards. Spectral and non-spectral interferences were studied in SB-GFAAS after digestion of the samples. The SS-GFAAS method required the use of less sensitive spectral lines of the analytes and a higher internal furnace gas (Ar) flow rate to decrease the sensitivity for crystal samples of higher (doped) analyte content. The chemical forms of the matrix produced at various stages of the graphite furnace heating cycle, dispensed either as a solid sample or a solution (after digestion), were studied by means of the X-ray near-edge absorption structure (XANES). These results revealed that the solid matrix vaporized/deposited in the graphite furnace is mostly present in the metallic form, while the dry residue from the solution form mostly vaporized/deposited as the oxide of niobium.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aca.2012.03.013DOI Listing

Publication Analysis

Top Keywords

graphite furnace
12
determination trace
8
trace elements
8
lithium niobate
8
solid sampling
8
atomic absorption
8
absorption spectrometry
8
inductively coupled
8
coupled plasma
8
spectrometry
5

Similar Publications

The conventional carbonization process for synthesizing hard carbons (HCs) requires high-temperature furnace operations exceeding 1000 °C, leading to excessive energy consumption and lengthy processing times, which necessitates the exploration of more efficient synthesis methods. This study demonstrates the rapid preparation of HC anodes using intense pulsed light (IPL)-assisted photothermal carbonization without the prolonged and complex operations typical of traditional carbonization methods. A composite film of microcrystalline cellulose (MCC) and single-walled carbon nanotubes (SWCNTs) is carbonized at high temperatures in less than 1 min.

View Article and Find Full Text PDF

A three-dimensional numerical model of the vacuum sintering furnace was established, combined with the custom program of temperature-voltage feedback regulation. Through simulationand experimental validation, the heating and holding stage as well as the thermal hysteresis phenomenon of the furnace were analyzed, a dimensionless quantity of hysteresis temperature difference was proposed and calculated, the distribution of the electric field and temperature uniformity of the furnace were discussed in detail, while the structural improvement approach was proposed based on simulation. The results show that: during the heating process, the maximum of thermal hysteresis temperature difference between the graphite cylinder and the heating tube is 0.

View Article and Find Full Text PDF

Heavy metal pollution, particularly from cadmium (Cd) and copper (Cu), poses significant environmental and health risks. To address the need for efficient, portable, and sensitive detection methods, this study introduces an improved atmospheric pressure glow discharge atomic emission spectrometry (APGD-AES) technique for quantifying Cd and Cu in water samples. The APGD-AES method offers key advantages, including low energy consumption (<33 W), high excitation energy, and compact design.

View Article and Find Full Text PDF

Surface water from springs, rivers, and dams is often used as an unconventional drinking water source in rural areas where potable water is often unavailable. However, this practice carries significant health risks due to potential contaminants. In this study, the concentrations of arsenic (As) and chromium (Cr) were assessed seasonally using graphite furnace atomic absorption spectrometry (GFAAS).

View Article and Find Full Text PDF

Development of a fully automated slurry sampling introduction system for GF-AAS and its application for the determination of cadmium in different matrices.

Anal Chim Acta

January 2025

Federal Institute for Materials Research and Testing, Division 1.1 - Inorganic Trace Analysis, Richard-Willstätter-Straße 11, 12489, Berlin, Germany; Federal Institute for Materials Research and Testing, Division 1.4 - Process Analytical Technology, Richard-Willstätter-Straße 11, 12489, Berlin, Germany. Electronic address:

Article Synopsis
  • Graphite Furnace-Atomic Absorption Spectrometry (GF-AAS) is highly sensitive for trace element analysis but struggles with solid sample preparation, like soils and microplastics, due to time-consuming methods that increase measurement uncertainty and carbon footprints.
  • A novel autosampler extension has been developed to enhance GF-AAS by ensuring sample suspension stability and preventing evaporation and contamination, offering reliable results with impressive recovery rates in various materials.
  • This advancement streamlines trace element analysis in complex samples, making it an essential tool for environmental monitoring and regulatory compliance while improving accuracy and efficiency in high-throughput settings.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!